• Title/Summary/Keyword: Driver information system (DIS)

Search Result 4, Processing Time 0.015 seconds

Effect of Touch-key Sizes on Usability of Driver Information Systems and Driving Safety (터치키 크기가 운전자 정보 시스템의 사용성과 운전의 안전성에 미치는 영향 분석)

  • Kim, Hee-Hin;Kwon, Sung-Hyuk;Heo, Ji-Yoon;Chung, Min-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.1
    • /
    • pp.30-40
    • /
    • 2011
  • In recent years, driver information systems (DIS's) became popular and the use of DIS's increased significantly. A majority of DIS's provides touch-screen interfaces because of intuitiveness of the interaction and the flexibility of interface design. In many cases, touch-screen interfaces are mainly manipulated by fingers. In this case, investigating the effect of touch-key sizes on usability is known to be one of the most important research issues, and lots of studies address the effect of touch-key size for mobile devices or kiosks. However, there is few study on DIS's. The importance of touch-key size study for DIS's should be emphasized because it is closely related to safety issues besides usability issues. In this study, we investigated the effect of touch-key sizes of DIS's while simulated driving (0, 50, and 100km/h) considering driving safety (lateral deviation, velocity deviation, total glance time, mean glance time, total time between glances, mean number of glances) and usability of DIS's (task completion time, error rate, subjective preference, NASA TLX) simultaneously. As a result, both of driving safety and usability of DIS's increased as driving speed decreased and touch-key size increased. However, there were no significant differences when touch-key size is larger than a certain level (in this study : 17.5mm).

Developing User Interface Metaphors for Driver Information Systems (운전자 정보시스템용 사용자 인터페이스 메타포 개발)

  • Park, Yong-S.;Han, Sung-H.;Park, Won-Kyu;Cho, Young-Seok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.57-67
    • /
    • 2009
  • This study proposed a practical metaphor development process that consisted of three steps: 1) identifying major functions, 2) developing metaphor candidates, and 3) evaluating appropriateness of the candidates. In the first step, a total of 27 functions might be implemented in a driver information system (DIS) in the near future. Then, three metaphor candidates were selected from existing metaphors, which were reported to be more practical than others by previous studies. Finally, the candidates were evaluated on their appropriateness for driver information systems by using a quick and simple survey. As a result, two metaphors (a PC and a secretary) were identified as the most appropriate ones. The two metaphors can be used to design a variety of interfaces and interactions for driver information systems. In addition, the development process proposed in this study could be applied to developing metaphors for emerging devices with a variety of functions (e.g. PMPs, MP3s, and electronic dictionaries) as well as driver information systems.

Speech Recognition System in Car Noise Environment (자동차 잡음환경에서의 음성인식시스템)

  • Kim, Soo-Hoon;Ahn, Jong-Young
    • Journal of Digital Contents Society
    • /
    • v.10 no.1
    • /
    • pp.121-127
    • /
    • 2009
  • The automotive ECU(Electronic Control Unit) becomes more complicated and is demanding many functions. For example, many automobile companies are developing driver convenience systems such as power window switch, LCM(Light Control Module), mirror control system, seat memory. In addition, many researches and developments for DIS(Driver Information System) are in progress. It is dangerous to operate such systems in driving. In this paper, we implement the speech recognition system which controls the car convenience system using speech, and apply the preprocessing filter to improve the speech recognition rate in car noise environment. As a result, we get the good speech recognition rate in car noise environment.

  • PDF

Design of Power IC Driver for AMOLED (AMOLED 용 Power IC Driver 설계)

  • Ra, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.587-592
    • /
    • 2018
  • Because the brightness of an AMOLED is determined by the flowing current, each pixel of AMOLED operates via A current driving method. Therefore, it is necessary to supply power to adjust the amount of current according to THE user's requirement for AMOLED driving. In this study, an IP driver block was designed and a simulation was conducted for an AMOLED display, which supplies power as selected by users. The IP driver design focused on regulating the output power due to the OLED characteristics for the diode electric current according to the voltage to be activated by pulse-skipping mode (PSM) under low loads, and 1.5 MHz pulse-width modulation (PWM) for medium/high loads. The IP driver was designed to eliminate the ringing effects appearing from the dis-continue mode (DCM) of the step-up converter. The ringing effects destroy the power switch within the IC, or increase the EMI to the surrounding elements. The IP driver design minimized this through a ringing killer circuit. Mobile applications were considered to enable true shut-down capability by designing the standby current to fall below $1{\mu}A$ to disable it. The driver proposed in this paper can be applied effectively to the same system as the AMOLED display dual power management circuit.