• 제목/요약/키워드: Driver Safety Assist System

검색결과 19건 처리시간 0.023초

운전자 운전행동 분석을 통한 안전운전 지원시스템 설계 및 구현 (The Design and Implementation of Driver Safety Assist System by Analysis of Driving Behavior Data)

  • 고재진;최기호
    • 한국항행학회논문지
    • /
    • 제17권2호
    • /
    • pp.165-170
    • /
    • 2013
  • 본 논문에서는 운전자의 주행습관 속에서 안전운전에 지원을 위한 정보 획득 및 분석 장치를 구현하였다. 안전운전 지원을 위하여 공격적 운전행동을 정의하고 운전 중 행동을 인식할 수 있는 정보 획득 방법을 고안하였다. 정보 수집 장치와 정보 분석모듈 그리고 운전행동 비교모듈을 설계하여 정보의 정확성을 높였으며. 운전자의 평소 운전행동과 비교하여 이상행동을 검출하여 경고할 수 있도록 시스템을 설계하였다.

운전자 의도정보를 이용한 온톨로지 기반 지능형자동차 상황인식 플랫폼 설계 및 구현 (Design and Implementation of ontology based context-awareness platform using driver intent information)

  • 고재진;최기호
    • 한국항행학회논문지
    • /
    • 제18권1호
    • /
    • pp.14-21
    • /
    • 2014
  • 본 논문에서는 주행상황의 자동차 정보를 인식하기 위하여 차량, 운전자, 환경 정보와 함께 주행상태 정보, 운전자상태 정보를 추가하여 실시간으로 바뀌는 운전행동에 대한 정보를 상황인식에 활용하여 운전자의 의도를 반영할 수 있도록 하였으며, 온톨로지 기반 상황인식 모델을 구성하여 다양한 상황에서의 상황인식이 가능하게 설계하였다. 상황정보의 획득방법으로 운전자 정보와 주행정보는 카메라를 이용한 영상인식 기술을 활용하며, 자동차 정보는 OBD-II 프로토콜을 이용한 정보 획득 장치를 이용한다. 실험결과 운전자 상태정보와 주행정보의 분석을 통하여 운전자 의도를 반영한 제안 시스템이 고속주행 상황에서의 차선이탈 경고 서비스 및 저속주행 상황에서의 안전거리 경보서비스를 위한 상황인식에 있어서 기존의 차량, 운전자, 환경정보를 활용한 방식보다 운전자 안전지원 서비스에 우수한 성능을 확인할 수 있었다.

측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발 (Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance)

  • 이준영;김동욱;이경수;유현재;정혁진;고봉철
    • 자동차안전학회지
    • /
    • 제5권2호
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

횡풍하의 차량 외란 추정을 이용한 차선 유지 조향 보조 제어기 설계 (Design of Lane Keeping Steering Assist Controller Using Vehicle Lateral Disturbance Estimation under Cross Wind)

  • 임형호;좌은혁;이경수
    • 자동차안전학회지
    • /
    • 제12권3호
    • /
    • pp.13-19
    • /
    • 2020
  • This paper presents steering controller for unintended lane departure avoidance under crosswind using vehicle lateral disturbance estimation. Vehicles exposed to crosswind are more likely to deviate from lane, which can lead to accidents. To prevent this, a lateral disturbance estimator and steering controller for compensating disturbance have been proposed. The disturbance affecting lateral motion of the vehicle is estimated using Kalman filter, which is on the basis of the 2-DOF bicycle model and Electric Power Steering (EPS) module. A sliding mode controller is designed to avoid unintended the lane departure using the estimated disturbance. The controller is based on the 2-DOF bicycle model and the vision-based error dynamic model. A torque controller is used to provide appropriate assist torque to driver. The performance of proposed estimator and controller is evaluated via computer simulation using Matlab/Simulink.

머신러닝/ADAS 정보 활용 충돌안전 제어로직 개발 (Development of Collision Safety Control Logic using ADAS information and Machine Learning)

  • 박형욱;송수성;신장호;한광철;최세경;하헌석;윤성로
    • 자동차안전학회지
    • /
    • 제14권3호
    • /
    • pp.60-64
    • /
    • 2022
  • In the automotive industry, the development of automobiles to meet safety requirements is becoming increasingly complex. This is because quality evaluation agencies in each country are continually strengthening new safety standards for vehicles. Among these various requirements, collision safety must be satisfied by controlling airbags, seat belts, etc., and can be defined as post-crash safety. Apart from this safety system, the Advanced Driver Assistance Systems (ADAS) use advanced detection sensors, GPS, communication, and video equipment to detect the hazard and notify driver before the collision. However, research to improve passenger safety in case of an accident by using the sensor of active safety represented by ADAS in the existing passive safety is limited to the level that utilizes the sudden braking level of the FCA (Forward Collision-avoidance Assist) system. Therefore, this study aims to develop logic that can improve passenger protection in case of an accident by using ADAS information and driving information secured before a collision. The proposed logic was constructed based on LSTM deep learning techniques and trained using crash test data.

첨단안전장치 장착 버스의 사고사례 분석 (Analysis for Traffic Accident of the Bus with Advanced Driver Assistance System (ADAS))

  • 박종진;최영수;박정만
    • 자동차안전학회지
    • /
    • 제13권3호
    • /
    • pp.78-85
    • /
    • 2021
  • Recently a traffic accident of heavy duty vehicles under the mandatory installation of ADAS (Advanced Driver Assistance System) is often reported in the media. Heavy duty vehicle accidents are normally occurring a high number of passenger's injury. According to report of Insurance Institute for Highway Safety, FCW (Forward Collision Warning) and AEB (Automatic Emergency Braking) were associated with a statistically significant 12% reduction in the rate of police-reportable crashes per vehicle miles traveled, and a significant 41% reduction in the rear-end crash rate of large trucks. Also many countries around the world, including Korea, are studying the effects of ADAS installation on accident reduction. Traffic accident statistics of passenger vehicle for business purpose in TMACS (Traffic safety information Management Complex System in Korea) tends to remarkably reduce the number of deaths due to the accident (2017(211), 2018(170), 2019(139)), but the number of traffic accidents (2017(8,939), 2018(9,181), 2019(10,095)) increases. In this paper, it is introduced a traffic accident case that could lead to high injury traffic accidents by being equipped with AEB in a bus. AEB reduces accidents and damage in general but malfunction of AEB could occur severe accident. Therefore, proper education is required to use AEB system, simply instead of focusing on developing and installing AEB to prevent traffic accidents. Traffic accident of AEB equipped vehicle may arise a new dispute between a driver's fault and vehicle defect. It is highly recommended to regulate an advanced event data recorder system.

Development of ISO 26262 based Requirements Analysis and Verification Method for Efficient Development of Vehicle Software

  • Kyoung Lak Choi;Min Joong Kim;Young Min Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.219-230
    • /
    • 2023
  • With the development of autonomous driving technology, as the use of software in vehicles increases, the complexity of the system increases and the difficulty of development increases. Developments that meet ISO 26262 must be carried out to reduce the malfunctions that may occur in vehicles where the system is becoming more complex. ISO 26262 for the functional safety of the vehicle industry proposes to consider functional safety from the design stage to all stages of development. Specifically at the software level, the requirements to be complied with during development and the requirements to be complied with during verification are defined. However, it is not clearly expressed about specific design methods or development methods, and it is necessary to supplement development guidelines. The importance of analysis and verification of requirements is increasing due to the development of technology and the increase of system complexity. The vehicle industry must carry out developments that meet functional safety requirements while carrying out various development activities. We propose a process that reflects the perspective of system engineering to meet the smooth application and developmentrequirements of ISO 26262. In addition, the safety analysis/verification FMEA processforthe safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to autonomous vehicles and the results were confirmed. In addition, the safety analysis/verification FMEA process for the safety of the proposed ISO 26262 function was conducted based on the FCAS (Forward Collision Avoidance Assist System) function applied to the advanced driver assistance system and the results were confirmed.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • 인터넷정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

모델기반 예측 제어기를 이용한 차선유지 보조 시스템 개발 (Development of a Model Based Predictive Controller for Lane Keeping Assistance System)

  • 황준연;허건수;나혁민;정호기;강형진;윤팔주
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.54-61
    • /
    • 2009
  • Lane keeping assistant system (LKAS) could save thousands of lives each year by maintaining lane position and is regarded as a promising active safety system. The LKAS is expected to reduce the driver workload and to assist the driver during driving. This paper proposes a model based predictive controller for the LKAS which requires cooperative driving between the driver and the assistance system. A Hardware-In-the-Loop-Simulator (HILS) is constructed for its evaluation and includes Carsim, Matlab Simulink and a lane detection algorithm. The single camera is mounted with the HILS to acquire the monitor images and to detect the lane markers. The simulation is conducted to validate the LKAS control performance in various road scenario.

AEB 시험평가 방법에 관한 연구 (A Study on Evaluation Method of AEB Test)

  • 김봉주;이선봉
    • 자동차안전학회지
    • /
    • 제10권2호
    • /
    • pp.20-28
    • /
    • 2018
  • Currently, sharp increase of car is on the rise as a serious social problem due to loss of lives from car accident and environmental pollution. There is a study on ITS (Intelligent Transportation System) to seek coping measures. As for the commercialization of ITS, we aim for occupancy of world market through ASV (Advanced Safety Vehicle) related system development and international standardization. However, the domestic environment is very insufficient. Core factor technologies of ITS are Adaptive Cruise Control, Lane Keeping Assist System, Forward Collision Warning System, AEB (Autonomous Emergency Braking) system etc. These technologies are applied to cars to support driving of a driver. AEB system is stop the car automatically based on the result decided by the relative speed and distance with obstacle detected through sensor attached on car rather than depending on the driver. The purpose of AEB system is to measure the distance and speed of car and to prevent accident. Thus, AEB will be a system useful for prevention of accident by decreasing car accident along with the development of automobile technology. This study suggests a scenario to suggest a test evaluation method that accords with domestic environment and active response of international standard regarding the test evaluation method of AEB. Also, by setting the goal with function for distance, it suggests theoretic model according to the result. And the study aims to verify the theoretic evaluation standard per proposed scenario using car which is installed with AEB device through field car driving test on test road. It will be useful to utilize the suggested scenario and theoretical model when conducting AEB test evaluation.