• Title/Summary/Keyword: Driver IC

Search Result 203, Processing Time 0.019 seconds

Highly Linear 1 W Power Amplifier MMIC for the 900 MHz Band Using InGaP/GaAs HBT (InGaP/GaAs HBT를 이용한 900 MHz 대역 1 W급 고선형 전력 증폭기 MMIC 설계)

  • Joo, So-Yeon;Han, Su-Yeon;Song, Min-Geun;Kim, Hyung-Chul;Kim, Min-Su;Noh, Sang-Youn;Yoo, Hyung-Mo;Yang, Youn-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.897-903
    • /
    • 2011
  • This paper presents a highly linear power amplifier MMIC, having an output power level of about 1 watt, based on InGaP/GaAs hetero-junction bipolar transistor(HBT) technology for the 900 MHz band. The active bias circuit is applied to minimize the effect of temperature variation. Ballast resistors are optimized to prevent a current collapse and a thermal runaway. The fabricated power amplifier exhibited a gain of 17.6 dB, an output P1dB of 30 dBm, and a PAE of 44.9 % at an output P1dB from the one-tone excitation. It also showed a very high OIP3 of 47.3 dBm at an average output power of 20 dBm from the two-tone excitation.

Design of a CMOS Tx RF/IF Single Chip for PCS Band Applications (PCS 대역 송신용 CMOS RF/IF 단일 칩 설계)

  • Moon, Yo-Sup;Kwon, Duck-Ki;Kim, Keo-Sung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.236-244
    • /
    • 2003
  • In this paper, RF and IF circuits for mobile terminals which have usually been implemented using expensive BiCMOS processes are designed using CMOS circuits, and a Tx CMOS RF/IF single chip for PCS applications is designed. The designed circuit consists of an IF block including an IF PLL frequency synthesizer, an IF mixer, and a VGA and an RF block including a SSB RF mixer and a driver amplifier, and performs all transmit signal processing functions required between digital baseband and the power amplifier. The phase noise level of the designed IF PLL frequency synthesizer is -114dBc/Hz@100kHz and the lock time is less than $300{\mu}s$. It consumes 5.3mA from a 3V power supply. The conversion gain and OIP3 of the IF mixer block are 3.6dB and -11.3dBm. It consumes 5.3mA. The 3dB frequencies of the VGA are greater than 250MHz for all gain settings. The designed VGA consumes 10mA. The designed RF block exhibits a gain of 14.93dB and an OIP3 of 6.97dBm. The image and carrier suppressions are 35dBc and 31dBc, respectively. It consumes 63.4mA. The designed circuits are under fabrication using a $0.35{\mu}m$ CMOS process. The designed entire chip consumes 84mA from a 3V supply, and its area is $1.6㎜{\times}3.5㎜$.

  • PDF

An Area-Efficient Time-Shared 10b DAC for AMOLED Column Driver IC Applications (AMOLED 컬럼 구동회로 응용을 위한 시분할 기법 기반의 면적 효율적인 10b DAC)

  • Kim, Won-Kang;An, Tai-Ji;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.87-97
    • /
    • 2016
  • This work proposes a time-shared 10b DAC based on a two-step resistor string to minimize the effective area of a DAC channel for driving each AMOLED display column. The proposed DAC shows a lower effective DAC area per unit column driver and a faster conversion speed than the conventional DACs by employing a time-shared DEMUX and a ROM-based two-step decoder of 6b and 4b in the first and second resistor string. In the second-stage 4b floating resistor string, a simple current source rather than a unity-gain buffer decreases the loading effect and chip area of a DAC channel and eliminates offset mismatch between channels caused by buffer amplifiers. The proposed 1-to-24 DEMUX enables a single DAC channel to drive 24 columns sequentially with a single-phase clock and a 5b binary counter. A 0.9pF sampling capacitor and a small-sized source follower in the input stage of each column-driving buffer amplifier decrease the effect due to channel charge injection and improve the output settling accuracy of the buffer amplifier while using the top-plate sampling scheme in the proposed DAC. The proposed DAC in a $0.18{\mu}m$ CMOS shows a signal settling time of 62.5ns during code transitions from '$000_{16}$' to '$3FF_{16}$'. The prototype DAC occupies a unit channel area of $0.058mm^2$ and an effective unit channel area of $0.002mm^2$ while consuming 6.08mW with analog and digital power supplies of 3.3V and 1.8V, respectively.