• Title/Summary/Keyword: Driver Comfort

Search Result 111, Processing Time 0.024 seconds

A Study of the Major Considerations in Slacks Design for an Automobile Driver (운전자세에 적합한 기능적 슬랙스 설계에 관한 연구)

  • 이혜진;최혜선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.11
    • /
    • pp.1514-1526
    • /
    • 2002
  • The objective of this study is to ascertain the major considerations when designing slacks for automobile drivers reflecting the elasticity of the human body posture. The scope of this study aims to find out the causes of discomfort in driving positions based on the results of a questionnaire survey and body measurements fur slacks, as well testing four types of experimental slacks for comfort and fitness when sitting on a driver's seat and in the standing position. Based on the results, a slacks design for drivers with improved comfort and fitness is suggested.

Quantification of Seat Comfort Feeling Long-term Comfort (시트 착좌감 정량화 평가법 개발 롱텀 컴포트)

  • Park, Hyunkyu;Kim, Yungsik;Lee, Jaewon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.1-4
    • /
    • 2014
  • In recent years, requests for automotive seat comfort are increasing. An important issue of them is long-term seat comfort. Until now, the study for long-term seat comfort has been studied mainly using driver's questionnaire, changing adrenalin and electromyography. Actually the results and methodologies of them are difficult to apply to seat development and design because of money and time required. In this study, we developed Seating Feel Curve for seat comfort evaluation and a long-term seat comfort evaluation which can be applied to the development of seat comfort using seat support.

Improvement of Seat Comfort by Reducing the Human Vibration (인체진동을 고려한 시트 안락성 향상)

  • 장한기;김승한;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.444-449
    • /
    • 2001
  • The purpose of the work is to improve comfort of a car seat, especially dynamic comfort which affects driver's discomfort during the long time driving. Definition of dynamic comfort was made before the investigation of which parameter affects seat comfort. In order to optimize design parameters so as to maximize seat comfort as well as to know the cause of discomfort, benchmarking on a target vehicle and competitive vehicles was performed, which showed both the vibration transmission characteristics and the compression set due to dynamic loading should be reduced. As a solution ball rebounds was increased by about 10% of the original foam, which showed reduction of S.E.A.T. value by 10% and of compression set by 60%.

  • PDF

Analysis of Ventilating Seat Comfort Temperature for Improving the Thermal Comfort inside Vehicles (자동차 실내 열쾌적성 개선을 위한 통풍시트의 쾌적온도 분석)

  • In, Chung-Kyo;Kwak, Seung-Hyun;Kim, Chang-Hoon;Kim, Kyu-Beom;Jo, Hyung-Seok;Seo, Sang-hyeok;Myung, Tae-Sik;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • As the number of automobile registrations increases and luxury expectations grow, consumers are increasingly interested in indoor environment of vehicles. Therefore, manufacturers have an increasing interest in improving the indoor comfort as well as automobile performance. Research on indoor automobile comfort can help manufacturers increase driver satisfaction and reduce driver stress and discomfort, thereby reducing the risk of traffic accidents. Using electroencephalogram (EEG) measurements, we investigated the change in comfort and comfortable temperature according to the ventilating seat temperature change for both men and women. Results showed that the sensation of comfort was statistically significantly higher at 25℃ than at 28℃. Secondly, there was no statistically significant difference in temperature-based comfort feeling between male and female subjects. In the future, if the correlation between the driver's comfort feeling and the change in ventilating seat temperature is analyzed, it is possible to reduce traffic accidents caused by human error and reduce the electric energy consumption of the automobile.

Design of Driver's Cab for KHST Power Car (한국형 고속전철 동력차 운전실 설계)

  • 염경안;강석택;박광복
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.139-145
    • /
    • 1999
  • The design of driver's cab includes the structure of cab frame, the layout of driver's cab equipment and facilities, i.e. driver's desk, seat, windows, floor, interior equipment, cab partition etc. The concept applied to the detail design has to be based on the ergonomics to guarantee the safety, comfort, and easy operation for the driver. In the aspect of manufacture, one more factor 'modulization' has to be considered into the design of sub blocks for cost-down. The design has to be implemented in the space allocated for driver's cab, which space is directly determined by the cab frame, optimized for the layout of driver's cab. The design process and results of the driver's cab for KHST will be described in this paper.

  • PDF

A Study on the Actual Wearing Conditions of Korean Military Tank Driver's Clothing (전차병복 착용실태에 관한 연구)

  • Kwon, Seo-Yoon;Lim, Chae-Guen;Shin, Dong-Woo;Jung, Hyun-Mi
    • Fashion & Textile Research Journal
    • /
    • v.13 no.4
    • /
    • pp.582-589
    • /
    • 2011
  • The purpose of this study was to investigate problems of design, fitness, suitability for movement, and comfort in current Korean military tank driver's clothing through analysis of actual wearing condition by questionnaire and field evaluation and. to provide basic data for developing a improved design of Korean military tank driver's clothing. The survey was done for 477 military tank driver and the field evaluation was also done for evaluation. The overall satisfaction for design of military tank driver's clothing(3.25) was higher than that for the easiness in wearing and taking off(2.76). The military tank drivers evaluated that current coverall type of clothing is more suitable than two-piece type of clothing. The overall satisfaction for fitness of clothing was as a whole low(2.82~3.09), Especially, the satisfaction for fitness of from front and back rise length was the lowest one. In the satisfaction for clothing materials, the satisfaction for the breathability of material was the lowest, followed by clothing insulation and air permeability. The satisfaction for movement was low in bending waist and raising forward and aside. The part which surveyors think most dissatisfactory was also front and back rise length. The frequency in use of pocket was the highest in chest pocket, followed by waist and pants pockets. The satisfaction for opening easiness of hips opening part was very low(2.64).

Robust Design Optimization of the Vehicle Ride Comfort Considering Variation of the Design Parameters (설계변수의 산포를 고려한 차량 승차감의 강건최적설계)

  • Song, Pil-Gon;Spiriyagin, Maksym;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1217-1223
    • /
    • 2008
  • Vehicle vibration mostly originates from the road excitation and causes discomfort, fatigue and even injury to a driver. Vehicle ride comfort is one of the most important performance indices to achieve a high-quality vehicle design. Since design parameter variations inevitably result in the vehicle ride comfort variance, the variance characteristics should be analyzed in the early design stage of the vehicle. The vehicle ride comfort is often defined by an index which employs a weighted RMS value of the acceleration PSD of a seat position. The design solution is obtained through two steps in this study. An optimization problem to obtain a minimum ride comfort index is solved first. Then another optimization problem to obtain minimum variance of the ride comfort index is solved. For the optimization problems, the equations of motion and the sensitivity equations are derived basing on a 5-DOF vehicle model. The numerical results show that an optimal solution for the minimum ride comfort is not necessarily same as that of the minimum variance of the ride comfort.

A Study on the Development of Comfort Evaluation Method for Automotive Seat (자동차 시트의 안락감 평가 방법 연구)

  • Nahm, Yoon-Eui;Lee, Young-Shin;Park, Se-Jin;Min, Byung-Chan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.75-86
    • /
    • 1999
  • The improvement of automotive seating system, particularly for the driver, has been the subject of intense interest. In this study, the methods for evaluating the seating comfort are investigated. A subjective evaluation has been the general method for evaluating the seating comfort of automotive seat. Therefore, the survey using the roadside interview is conducted. In addition, the subjective evaluation with a questionnaire using the laboratory set-up is investigated. With this subjective evaluation, in order to evaluate the comfort objectively, the body pressure distribution, seat physical characteristics and eletromygram are investigated. These objective evaluation methods are compared with the subjective evaluation. As a result, the body pressure distribution, seat physical characteristics and electromyogram are recommended as the objective technique for the seating comfort evaluation.

  • PDF

Effectiveness of Road Lighting on Driver' Vision (도로조명 방식이 운전자 시지각에 미치는 영향)

  • Jeong, Jun-Hwa;Lee, Suk-Ki;Kim, Won-Sik;Lee, Mi-Ae
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.125-131
    • /
    • 2012
  • PURPOSES : Road lighting facilities increase the visibility of road at night in order to improve traffic driver safety and comfort. Generally speaking, current pole lighting has a tendency to create problems of glare and flicker. The phenomenon of glare gives discomfort due to increase of scattered light, when high luminance is in driver's field of view. The phenomenon of flicker occurs due to the driver passing through discontinuous pockets of pole lighting areas. These phenomenon increase eye strain and decrease driver safety. METHODS : Low height line lighting that distributes light lower than driver's eye level has been developed and evaluated to reduce the problems linked to current pole lighting. A test was undertaken with 4 conditions(turn on the general pole lighting, turn off alternate pole lighting, turn on the line lighting and line lighting with 50% dimming). A driver written survey was conducted in order to gain driver feedback. RESULTS : Pupil size and brow frequency compared with degree in pole lighting are reduced. CONCLUSIONS : Low height line lighting environment makes drivers more comfortable than pole lighting environment and is positive lighting method in the energy saving and landscape aspect.

Numerical Study on Human Thermal Comfort in a Low Floor Bus (저상버스 탑승객의 온열 쾌적성에 관한 수치연구)

  • PARK, WON GU;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.645-651
    • /
    • 2015
  • Numerical study on human thermal comfort in a low floor bus has been conducted. Human thermal comfort in a bus depends mainly on air temperature, air velocity, mean radiant temperature, humidity, and direct solar flux, as well as the level of activity and thermal properties of clothing. The paper presents the velocity and temperature distribution, Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) indices for the driver and passengers.