• 제목/요약/키워드: Driver′s drowsiness

검색결과 39건 처리시간 0.023초

눈의 히스토그램과 에지를 이용한 졸린 상태 감시 시스템 개발 (Development of Sleepy Status Monitoring System using the Histogram and Edge Information of Eyes)

  • 강수민;허경무;주영복
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.361-366
    • /
    • 2016
  • In this paper, we propose a technique for drowsiness detection using the histogram and edge information of eyes. The drowsiness of vehicle drivers is the main cause of many vehicle accidents. Therefore, the checking of eye images in order to detect the drowsiness status of a driver is very important for preventing accidents. In our suggested method, we analyze the changes of the histograms and edges of eye region images, which are acquired using a CCD camera. The experimental results show that our proposed method enhances the accuracy of detecting drowsiness to nearly 99%, and can be used for preventing vehicle accidents caused by the driver's drowsiness.

졸음방지시스템 개발을 위한 졸음감지에 관한 연구 (A Study on the Drowsinss Detection for Development of Drowsiness Prevention System)

  • 정경호;김법중;김동욱;김남균
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.56-59
    • /
    • 1996
  • The purpose of this study is to identify the cause of driver's drowsiness and to get information about driver's drowsiness from facial image using computer vision. We measured the driver's movements of a head and shoulders in the highway arid street. We also measured the eye blink duration and yawning duration of normal and drowsy drivers. from the results, we confirmed that the measurement of eye blink and yawning might be a way of drowsy detection.

  • PDF

영상 인식 및 생체 신호를 이용한 운전자 졸음 감지 시스템 (Driver Drowsiness Detection System using Image Recognition and Bio-signals)

  • 이민혜;신성윤
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.859-864
    • /
    • 2022
  • 매년 교통사고의 가장 큰 원인으로 손꼽히는 졸음운전은 운전자의 수면 부족, 산소 부족, 긴장감의 저하, 신체의 피로 등과 같은 다양한 요인을 동반한다. 졸음 유무를 확인하는 일반적인 방법으로 운전자의 표정과 주행패턴을 파악하는 방법, 심전도, 산소포화도, 뇌파와 같은 생체신호를 분석하는 방법들이 연구되고 있다. 본 논문은 영상을 검출하는 딥러닝 모델과 생체 신호 측정 기술을 이용한 운전자 피로 감지 시스템을 제안한다. 제안 방법은 일차적으로 딥러닝을 이용하여 운전자의 눈 모양과 하품 유무, 졸음으로 예상되는 신체 동작을 파악하여 졸음 상태를 감지한다. 이차적으로 맥파 신호와 체온을 이용하여 운전자의 피로 상태를 파악하여 시스템의 정확도를 높이도록 설계하였다. 실험 결과, 실시간 영상에서 운전자의 졸음 유무 판별이 안정적으로 가능하였으며 각성상태와 졸음 상태에서의 분당 심박수와 체온을 비교하여 본 연구의 타당성을 확인할 수 있었다.

운전자 졸음시 냉풍 자극이 뇌파 및 심전도 반응에 미치는 영향 (The Effect of Cold Air Stimulation on Electroencephalogram and Electrocardiogram during the Driver's Drowsiness)

  • 김민수;김동규;박종일;금종수
    • 설비공학논문집
    • /
    • 제29권3호
    • /
    • pp.134-141
    • /
    • 2017
  • The purpose of this study was to analyze physiological changes via a cold air reaction experiment to generate basic data that are useful for the development of an automobile active air conditioning system to prevent drowsiness. The $CO_2$ concentration causing drowsiness in vehicle operation was kept below a certain level. Air was blown to the driver's face by using an indoor air cooling apparatus. Sleepiness and the arousal state of the driver in cold wind were measured by physiological signals. It was evident in the EEG that alpha waves decreased and beta waves increased, caused by cold air stimulation. The ${\alpha}/{\beta}$ ratio was reduced by about 52.9% and an alert state confirmed. In the electrocardiogram analysis, the efficiency of cold air stimulation was confirmed by the mean heart rate interval change. The R-R interval had a delay time of about one minute compared to the EEG response. The findings confirmed an arousal effect from sleepiness due to cold air stimulation.

실시간 지능형 운전자 건강 및 주의 모니터링 시스템 (Real-time Intelligent Health and Attention Monitoring System for Car Driver)

  • 신흥섭;정상중;서용수;정완영
    • 한국정보통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.1303-1310
    • /
    • 2010
  • 최근 운전자의 건강상태 모니터링 및 졸음운전 방지를 위한 자동차용 부품관련 센서개발 및 시스템 연구들이 국내외에서 활발히 진행되고 있다. 본 논문은 이러한 운전자의 건강 상태 및 졸음운전을 점검하기 위해 체스트벨트 심전도 (ECG)와 손목착용형 산소포화도 (SpO2) 센서를 제작하여 생체신호를 측정하였으며, 측정된 심전도, 산소 포화도, 그리고 심장박동수 신호는 무선센서네트워크를 통해 수집, 전송 및 모니터링 등의 처리를 가능하게 하여 운전자에게 안전운행을 위한 정보를 제공하도록 하였다. 원격지인 서버 PC와 연결된 베이스스테이션으로 수집된 심전도와 용적맥파 신호에서 HRV (Heart Rate Variability, 심박변이도) 신호를 검출하였으며, 검출된 HRV 신호를 시간 영역과 주파수 영역에서의 해석을 통하여 운전자의 스트레스 지수 및 졸음 상태의 실시간 모니터링 및 졸음상태의 운전자에게 주의를 제공하기 위하여 알람을 제공하는 형태의 지능형 모니터링 시스템을 구현하였다.

자동차 운전자 졸림 감지 기술 (Car Driver Drowsiness Detection Technology)

  • 정완영;김종진;권태하
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.481-484
    • /
    • 2011
  • 최근의 자동차 기술이 기계적 장치 위주에서 전장부품 특히, 차량의 안전 및 편의 기술로서 발전되고 있어서, 추후 자동차의 경쟁력은 에너지 효율성문제와 안전편의 기술의 적용에 의해 그 경쟁력이 결정될 것으로 판단된다. 본 연구에서는 자동차 운전자 졸림의 검지하기 위한 각종 기술을 소개하고 상용화된 기술의 장단점을 비교하여서, 이의 문제점을 해결하기 위한 복합 센싱기술을 소개한다. 기존의 카메라에 의한 눈동자인식을 기반으로한 직접적인 졸림검지와 운전자의 생체신호를 검출하여 간접적으로 스트레스, 피로도, 졸림을 검출하는 방법을 결합하여, 보다 정확도가 높은 졸림검지가 가능한 알고리즘을 개발하였다.

  • PDF

운전자의 졸음지표 감지를 위한 뇌파측정 장치 개발 및 유용성 평가 (Development and usability evaluation of EEG measurement device for detect the driver's drowsiness)

  • 박문규;이충헌;안영준;지훈;이동훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.947-950
    • /
    • 2015
  • 우리나라 전체 교통사고 원인에 있어서 졸음운전은 음주운전보다도 더 큰 비중을 차지하고 있는 위험요소로 나타나고 있다. 따라서 사전에 졸음운전사고를 예방하기 위하여 운전자의 졸음을 인식하고 경고해주는 시스템 개발과 관련된 연구가 활발하게 이루어지고 있는 추세이며, 졸음의 지표는 뇌파의 알파파를 분석하는 것이 효과적이라는 선행 연구결과들이 발표되었다. 본 연구에서는 LabView 프로그램을 이용하여 졸음지표를 검출할 수 있는 신호처리 알고리즘을 적용시킨 뇌파측정 장치를 자체 개발하였다. 소수의 실험자를 대상으로 졸음유도 실험을 실시한 결과 알파파의 상대 파워스펙트럼 변화를 기준으로 졸음상태를 의미하는 뇌파의 패턴을 검출 할 수 있었다. 이후 기존의 뇌파측정 장비들을 사용하여 측정한 졸음패턴과 비교분석한 결과 유사한 패턴을 나타내는 것을 확인 할 수 있었다. 이러한 결과를 바탕으로 차후 운전자의 졸음예방 시스템에 활용한다면 졸음운전 사고로 인한 사망률을 낮추는데 기여할 수 있을 것으로 기대된다.

  • PDF

운전자 졸음 및 각성 상태 시 ECG신호 처리를 통한 심장박동 신호 특성 (Characteristics of Heart Rate Variability Derived from ECG during the Driver's Wake and Sleep States)

  • 김민수;김윤년;허윤석
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.136-142
    • /
    • 2014
  • Distinct features in heart rate signals during the driver's wake and sleep states could provide an initiative for the development of a safe driving systems such as drowsiness detecting sensor in a smart wheel. We measured ECG from health subjects ($23.5{\pm}2.5$ in age) during the wake and drowsiness states. The proposed method is able to detect R waves and R-R interval calculation in the ECG even when the signal includes in abnormal signals. Heart rate variability(HRV) was investigated for the time domain and frequency domains. The STD HR(0.029), NN50(0.044) and VLF power(0.0018) of the RR interval series of the subjects were significantly different from those of the control group (p < 0.05). In conclusion, there are changes in heart rate from wake to drowsiness that are potentially to be detected. The results in our study could be useful for the development of drowsiness detection sensors for effective real-time monitoring.

졸음감지를 위한 깜박임 패턴 검출에 관한 연구 (A Study on the Blink Pattern Extraction of a Driver in Drowsy State)

  • 김법중;박상수;오승곤;김남균
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.322-325
    • /
    • 1997
  • In this study, we propose a non-invasive method to detect the drowsiness of a driver. The computer vision technology was used to extract an eye, track eyelids and measure the parameters related to the blink. We examined the blink patterns of a driver in drowsy state. For the evaluation of our image processing algorithm, the blink patterns were compared with the measured EOG signals. The result showed that our algorithm might be available in detection of drowsiness.

  • PDF

졸음 방지 시스템을 위한 눈 개폐 상태 판단 방법 (A Method to Identify the Identification Eye Status for Drowsiness Monitoring System)

  • 이주현;유형석
    • 전기학회논문지
    • /
    • 제63권12호
    • /
    • pp.1667-1670
    • /
    • 2014
  • This paper describes a method for detecting the pupil region and identification of the eye status for driver drowsiness detection system. This program detects a driver's face and eyes using viola-jones face detection algorithm and extracts the pupil area by utilizing mean values of each row and column on the eye area. The proposed method uses binary images and the number of black pixels to identify the eye status. Experimental results showed that the accuracy of classification eye status(open/close) was above 90%.