• Title/Summary/Keyword: Drive train model

Search Result 38, Processing Time 0.025 seconds

The Influence of Main Bearing Stiffness on the Gearbox of 3 Point Suspension Wind Turbine Drive Train (메인 베어링 강성이 풍력발전기용 3점 지지 드라이브 트레인의 기어박스에 미치는 영향)

  • Nam, Ju Seok;Nam, Yong Yun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.278-286
    • /
    • 2015
  • The effects of the main bearing stiffness combined with vertical non-torque force on the input load and shaft deflection of a gearbox were investigated for the three-point suspension drive train of a wind turbine. A finite element analysis model for the drive train was studied experimentally, and its applicability to the present study was verified. The results show that, as the main bearing stiffness is increased, the input load of the gearbox decreases, whereas the input shaft deflection increases. The stiffness component for the pitch moment has the largest influence on the gearbox input load. Although the gearbox life increases at a higher main bearing stiffness, the economic efficiency and durability of the entire drive train system should also be considered in the selection of the main bearing stiffness.

A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode (차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구)

  • 최윤준;송해박;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.

An Effect of Pitch Gain-Scheduling on Shaft Vibration Response of Wind Turbine (풍력터빈 축 진동 응답에 대한 피치 게인-스케쥴링의 효과)

  • Lim, Chae-Wook;Jo, Jun-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2012
  • Pitch control of wind turbine is activated above rated wind speed for the purpose of rated power regulation. When we design pitch controller, its gain-scheduling is essential due to nonlinear characteristics of aerodynamic torque. In this study, 2-mass model including a vibration mode of drive-train for a 2 MW wind turbine is considered and pitch control with gain-scheduling using a linearization analysis of the nonlinear aerodynamic torque is applied. Some simulation results for the pitch gain-scheduling under step wind speed are presented and investigated. It is shown that gain-scheduling in pitch control is important especially in the region of high wind speeds when there exists a vibration mode of drive-train.

A Study on the Effect of Low Pass Filter and Drive Train Damper for the NREL 5MW Wind Turbine Control (NREL 5MW 풍력터빈 제어용 저주파 통과 필터와 드라이브 트레인 댐퍼의 효과 고찰)

  • Lim, Chae-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.443-451
    • /
    • 2021
  • It is essential to examine and analyze the power output and load responses together using real-world turbulent wind speeds. In this paper, the power controller and the drive train damper are simultaneously considered using the NREL 5MW wind turbine model, and the damage equivalent load(DEL) of the low speed shaft torque and power output responses according to the natural frequency of the second order low pass filter are simultaneously investigated. Numerical testing is carried out above rated wind speed using commercially available Bladed software. From the viewpoints of DEL reduction of the drive train shaft torque and power output responses, it is shown that the natural frequency of the low pass filter is appropriately about 6 to 10rad/s. And the reduction ratio of the DEL of the low-speed shaft torque decreases as the wind speed becomes higher, and it is confirmed that the reduction ratio is limited to about 20% at high wind speeds.

An Experimental Study of the Improvement of Driveability in Vehicle Acceleration Mode (차량 급가속시 운전성 개선을 위한 실험적 연구)

  • 송해박;최윤준;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.65-75
    • /
    • 2001
  • Modern vehicles require a high degree of refinement including good driveability. Vehicle driveability, which becomes a key decisive factor f3r marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes experimental procedures which have been developed to measure engine torque and investigate shuffle characteristics. To analyze the vehicle dynamic behavior, fractional torques and inertia mass moment of engine, and drive train were measured. Shuffle characteristics during tip-in condition were investigated in an experimental vehicle at 2nd and 3rd gear stages. It was found that the shuffle characteristics were caused by sudden changes of engine torque and have a different vibration frequency with gear stage variation. Inertia mass moment of engine including flywheel rotation showed a key factor for the shuffle characteristics.

  • PDF

Simulation Technique of Wind Turbine Dynamic Behavior using Multibody FEM Analysis (탄성 다물체 동역학 해석기법을 이용한 풍력터빈 드라이브트레인의 동특성 해석)

  • Lee, Seung-Kyu;Lim, Dong-Su;Park, Young-Su;Kim, Jin;Choi, Won-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.817-821
    • /
    • 2008
  • Wind turbine requires service life of about 20 years and each components of wind turbine requires high durability, because installation and maintenance costs are more expensive than generated electricity by wind turbine. So the design of wind turbine must be verified in various condition before production step. This paper demonstrates the application of a generic methodology, based on the flexible multibody simulation technique, for the dynamic analysis of a wind turbine and its drive train. The concern of the paper is the computation of dynamic loads of wind turbine in emergency-stop condition. The finite element model is used to analyse the dynamic behaviour of the wind turbine.

  • PDF

Fault Analysis of the Wind Turbine Drive Train in the Quefrency Region (큐프렌시 영역 해석을 통한 드라이브 트레인 결함 분석)

  • Park, Yong-Hui;Shi, Wei;Park, Hyun-Chul
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.5-13
    • /
    • 2013
  • In the previous research, dynamic results have been analyzed in the time and frequency regions. Time and frequency region can be transformed by the Fourier transform. This transform is very useful about analyzing system behaviors. However, because of coupling, it cannot give clear results in the real system including lots of defects. In this paper, we introduced the analysis based on quefrency region to represent physical means clearly from complicated results. We simulated the drive train system which has defects, and compared between frequency and quefrency region to show its excellence. To do this process, We established mathematical model. The equation of motion was derived by the Lagrange equation and constraint equations. The constraint equation included relationships about gear mesh, flexibility of shaft. About numerical analysis, the Newmark beta method was used to get results. And FFT (Fast Fourier Transform) which converts results from time domain to frequency, qufrequency was used.

Investigation of Structural Safety of Monobloc Tubular Drive Shaft Subjected to Torque (비틀림 모멘트가 부가되는 일체형 중공 드라이브 샤프트의 구조 안정성 분석)

  • Guk, Dae-Sun;Ahn, Dong-Gyu;Lee, Ho-Jin;Jung, Jong-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1073-1080
    • /
    • 2015
  • A drive shaft is used to transmit torque and rotation through the connection of components of a drive train. Recently, a monobloc drive shaft without welding regions is developed to improve the safety of the drive shaft. The drive shaft bears the shear stress induced by torque. The objective of this paper is to investigate into the structural safety of a monobloc tubular drive shaft subjected to torque. Elasto-plastic finite element (FE) analysis is performed to estimate the deformation behavior of the drive shaft and stress-strain distribution in the drive shaft. Several techniques are used to create finite element (FE) model of the monobloc tubular drive shaft subjected to torque. Through the comparison of the results of FE analyses with those of experiments from the viewpoint of rotational angle, appropriate correction coefficients for different load conditions are estimated. The safety of the tubular drive shaft is examined using the results of FE analyses for different load conditions. Finally, it is noted that the designed tubular drive shaft has a sufficient structural safety.

Integration of Systems Engineering and System Safety Analysis for Developing CBTC System (CBTC 시스템 개발을 위한 시스템엔지니어링과 안전성 분석의 통합)

  • 박중용;박영원
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This article proposes an integrated systems engineering and safety analysis model for safety-critical systems development. A methodology in system design for safety is considered during the early phase of the development life cycle of systems engineering process. The evolution of the design automation technology has enabled engineers to perform the model-based systems engineering. A Computer-Aided Systems Engineering(CASE) tool, CORE, is utilized to integrate the systems engineering model with a system safety analysis model. The results of the functional analysis phase can drive the analysis of the system safety. An example of Communications-Based Train Control(CBTC) system for an Automated Guided Transit(AGT) system demonstrated an application of the integrated model.

Parametric Study on 3-way Switch Design Considering Levitation Stability of Maglev Train (자기부상열차의 부상안정성을 고려한 3방향 분기기의 설계 파라미터 연구)

  • Lee, Younghak;Han, Jong-Boo;Lim, Jaewon;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • It is essential to lighten the weight of switch girders in order to reduce their costs of manufacturing and make it easier to use them in construction. Lightening the weight of switch is also important to the Maglev 3-way switches system, however, the design variables should be considered very carefully if lightening is to be applied to the system, because these variables are vitally related to the levitation stability. Because Urban Maglev trains have a structure in which train bogie wraps around the guiderail, the adjustment of a girder's height is a possible way to reduce the weight. The safety of the application of this concept is ensured by repeated experiments in a test bed, however, due to a lack of space and budget limits, the design parametric study for the system model can substitute for actual application. The purpose of this paper is to study the design parameters that are concerned with levitation stability while a Maglev train is running on the Maglev 3-way system depending on the weight of the switch girders. In this study, switch girder weight is reduced by adjustment of girder height and girders are and modeled as a flexible body. The effect of the adjustment of girder height on the levitation stability can be analyzed by comparing the velocity of the train when it passes the switch girders, with the lateral gap, and the levitation gap which are obtained from the co-simulation of the Maglev train's dynamics model and flexible switching system. The results of this research will be used to design a Maglev switch.