• Title/Summary/Keyword: Drive gear

Search Result 256, Processing Time 0.026 seconds

Torsional Rigidity of a Two-stage Cycloid Drive (이단 사이클로이드 드라이브의 비틀림 강성)

  • Kim, Kyoung-Hong;Lee, Chun-Se;Ahn, Hyeong-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1217-1224
    • /
    • 2009
  • This paper presents a finite element (FE) analysis of the torsional rigidity of a two-stage cycloid drive. The cycloid disk makes contact with a number of pin-rollers simultaneously and eccentric shafts transmit not only torque of the spur gear stage to the cycloid disk, but also that of the cycloid disk to the output disk. Contacts between the disk and pin-rollers are simplified as linear spring elements, and the bearing of eccentric shaft is modeled as a rigid ring that has frictional contact to the disk and an elastic support. FE analysis for an ideal solid cycloid drive was performed and verified by a theoretical calculation. Accurate contact forces were then estimated by iterating between FE analysis for contact forces and Hertz theory calculations for nonlinear contact stiffness. In addition, torsional rigidity of the cycloid drive is analyzed to show that the bearing and nonlinear Hertz contact theory should be considered in analysis and design of a cycloid drive, which was verified with experiments. Finally, the effects of contact stiffness, bearing stiffness and cycloid disk structural stiffness according to the cycloid disk rotation on the torsional rigidity were investigated.

Compensation Algorithm for Automobile Shift Pattern using Fuzzy Reasoning (퍼지 추론을 이용한 자동차 변속패턴 보정 알고리즘 개발)

  • 길성홍;박귀태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.32-48
    • /
    • 1994
  • This paper proposes the compensation algorithm of conventional shift pattern using fuzzy reasoning in automatic transmission vehicles. Recently, automatic transimssion vehicles are continually increasing because of theire ease to drive. Also users require the high performance which includes the smooth shift quality and shift scheduling that matches driver;s intentions. So the shift scheduling has been inproved significantly through the application of electronic control. But, in spite of this development, vehicles using conventional shift pattern are sometimes in discord with driver's intention on roads. In this paper, the paper, the proposed compensation algorithm makes a automatic transmission vehicle be able to select an optimal gear shifting time and position using fuzzy reasoning and make a vehicle driver feel confortable even when the vehicle runs on roads which is extremely changed. Therefore, a vehicle driver can expect to reduce the nimber of unnecessary gear shifting and expect the fuel efficiency high. To show usefulness of the proposed method, some simulation are made to compared with conventional gear shifting. Paper prosposes the compensation mehtod of conventional shift pattern using fuzzy reasoning for the purpose that a vehicle can select an optimal gerar shifting time and position in automatic vehicle. Though the conventional shift pattern has no pliability, vehicle driver can feel comfortable and can reduce the number of unnecessary gear shifting using the proposed method on variable road condition. Therefore, it can be expected the fuel efficiency.

  • PDF

CrabBot: A Milli-Scale Crab-Inspired Crawling Robot using Double Four-bar Mechanism (CrabBot: 이중 4절 링크를 활용한 꽃게 모사 8족 주행 로봇)

  • Cha, Eun-Yeop;Jung, Sun-Pil;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.245-250
    • /
    • 2019
  • Milli-scale crawling robots have been widely studied due to their maneuverability in confined spaces. For successful crawling, the crawling robots basically required to fulfill alternating gait with elliptical foot trajectory. The alternating gait with elliptical foot trajectory normally generates both forward and upward motion. The upward motion makes the aerial phase and during the aerial phase, the forward motion enables the crawling robots to proceed. This simultaneous forward and upward motion finally results in fast crawling speed. In this paper, we propose a novel alternating mechanism to make a crab-inspired eight-legged crawling robot. The key design strategy is an alternating mechanism based on double four-bar linkages. Crab-like robots normally employs gear-chain drive to make the opposite phase between neighboring legs. To use the gear-chain drive to this milli-scale robot system, however, is not easy because of heavy weight and mechanism complexity. To solve the issue, the double-four bar linkages has been invented to generate the oaring motion for transmitting the equal motion in the opposite phase. Thanks to the proposed mechanism, the robot crawls just like the real crab with the crawling speed of 0.57 m/s.

Torque Characteristics Analysis of Harmonic Side Drive Motor by Conformal Mapping (등각사상에 의한 하모닉 모터의 토오크 특성 해석)

  • Yun, Seo-Jin;Lee, Eun-Ung;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.104-109
    • /
    • 1999
  • In order to design and predict the performance of the harmonic side drive motor, it is necessary to analyze the torque generated by the structure. In this paper, an analytical model is proposed for design. Conformal mapping is used to model the capacitance and torque of the motor as a function of the rotor angular position with two-dimensional approximation. Then the result of conformal mapping analysis is verified with F.E.M result.

  • PDF

On the Development of a Direct-Drive SCARA Robot (직접구훈(直接驅勳) 방식(方式)의 SCARA형(型) 로봇의 개발(開發)에 관(關)하여)

  • Lee, Gwan-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.813-816
    • /
    • 1991
  • Direct-drive SCARA-type industrial robots are increasingly used in the assembly process of small mechanical parts as well as electronic components, which uses direct-drive (DD) motors instead of reduction gear-type conventional motors for the actuators of manipulator arms. There are many advantages in using DD motors for robots, such as no backlash, low friction, high mechanical stiffness capability for fast and precise arm control, and high repeatability of positioning. However, there exist a number of difficulties which must be overcome to ensure proper construction and operation; increasing effects of load veriation and nonlinear and coupling dynamics, severe vibration caused by resonance of the manipulator components and low mechanical damping, etc. In order to handle these difficulties, lots of efforts have been made such as reduction of the arm inertia and elimination of the resonance, Performance evaluation of a recently developed, domestic DD robot shows that it works excellently compared with conventional robots. It, however, requires proved reliability and price competitiveness against its foreign counterparts.

  • PDF

Design and implementation of a dynamic controller for Hong-Ik Direct Drive Arm (홍익 직접 구동팔의 동적 제어기 개발)

  • 이재완;이종수;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1052-1057
    • /
    • 1993
  • A scara type Direct Drive Arm(DDA) with two degrees-of-freedom is designed and implemented. The direct drive motor is used to furnish large torque to reduce the modeling error by the gear and chains. To control the DDA, a multiprocessor control structure with multirate dynamic control algorithm is designed. In the control algorithm, the dynamics of system is used to calculate the nominal control torque and the feedback controls are calculated with a parallel processing algorithm for each joint. The laboratory experiments on Hong-Ik DDA by dynamic control algorithm are presented and compared to that of PID control algorithm. This result shows that the proposed controller guarantees small trajectory error and stability. With this research, Hong-Ik DDA is expected to be utilized as A basic tool for robotics and control engineering.

  • PDF