• Title/Summary/Keyword: Drive Logic

Search Result 240, Processing Time 0.031 seconds

An Expert System using Fuzzy and Binary logic for the Fault Diagnosis of Hard Disk Drive Test System (Hard Disk Drive 검사시스템의 고장 진단을 위한 퍼지-이진 논리 결합형 전문가 시스템에 관한 연구)

  • 문운철;이승철;남창우
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.457-464
    • /
    • 2004
  • Hard Disk Drive (HDD) test system is an equipment for the final test of HDD product by iterative read/write/seek test. This paper proposes an expert system for the fault diagnosis of HDD test systems. The purposed expert system is composed with two cascade inference, fuzzy logic and conventional binary logic. The fuzzy logic determines the possibility of the system fault using the test history data, then, the binary logic inferences the fault location of the test system. The proposed expert system is tested in SAMSUNG HDD production line, KUMI, KOREA, and shows satisfactory results.

An Expert System for the Fault Diagnosis of Hard Disk Drive Test System

  • Moon, Un-Chul;Kim, Woo-Kuen;Lee, Seung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2418-2423
    • /
    • 2005
  • Hard Disk Drive (HDD) test system is the equipment for the final test of HDD product by iterative read/write/seek test. This paper proposes an expert system for the fault diagnosis of HDD test systems. The purposed expert system is composed with two cascade inference, fuzzy logic and conventional binary logic. The fuzzy logic determines the possibility of the system fault using the test history data, then, the binary logic inferences the fault location of the test system. The proposed expert system is tested in SAMSUNG HDD product line, KUMI, KOREA, and shows satisfactory results.

  • PDF

An Expert System for the Fault Diagnosis of Hard Disk Drive Test System

  • Moon, Un-Chul;Kim, Woo-Kuen;Lee, Seung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2424-2429
    • /
    • 2005
  • Hard Disk Drive (HDD) test system is the equipment for the final test of HDD product by iterative read/write/seek test. This paper proposes an expert system for the fault diagnosis of HDD test systems. The purposed expert system is composed with two cascade inference, fuzzy logic and conventional binary logic. The fuzzy logic determines the possibility of the system fault using the test history data, then, the binary logic inferences the fault location of the test system. The proposed expert system is tested in SAMSUNG HDD product line, KUMI, KOREA, and shows satisfactory results.

  • PDF

A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode (차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구)

  • 최윤준;송해박;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.

A fuzzy-logic controller for a differential-drive mobile robot (이동로봇을 위한 퍼지로직 제어기)

  • 박영민;김대영;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.532-535
    • /
    • 1997
  • This paper describes the design of a fuzzy-logic controller for a differential-drive mobile robots. This controller uses absolute position information to modify control parameters to compensate the orientation error. CC-Control method is compensated for the internal error by wheel encoders and the fuzzy-logic control provides compensation for external errors. The validities of the proposed scheme is evaluated using simulation.

  • PDF

Design of Membership Ranges for Robust Control of Variable Speed Drive Refrigeration Cycle Based on Fuzzy Logic (가변속 냉동사이클의 강인제어를 위한 퍼지로직의 멤버십함수 범위 설계)

  • Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • This paper focuses on systematic design about the membership ranges of the main design factors such as control error, control error rate, and sampling time for the fuzzy logic control of the variable speed drive refrigeration cycle. The upper and the lowest limit of the membership ranges are set up from the data of static characteristics obtained by experiments. Three kinds of membership ranges on the control error and the control error rate are tested by experiments. Especially, an effect of sampling time on control performance is also investigated in the same way. Experimental data showed the control error rate and the sampling time strongly effected on the control performance of the refrigeration cycle with a variable speed drive.

Self-Organizing Fuzzy Logic Controller for CNC Feed Drive Systems with Large Disturbances (큰 외란이 존재하는 CNC 이송 구동계를 위한 적응 퍼지논리 제어기)

  • 지성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.180-192
    • /
    • 1998
  • This paper introduces a new self-organizing fuzzy logic controller (SOFLC) for precision contour machining in the presence of large disturbances which adjusts both input and output membership functions simultaneously. The parameters of the proposed controller are self-tuned in real-time according to a continuous measurement of the performance of the controller itself and estimated disturbance values. The proposed controller as well as a conventional fuzzy logic controller and a PID controller were simulated and implemented on a 3-axis milling machine in contour milling. Both the simulations and experiments show that the self-organizing fuzzy logic controller has superior performance in terms of contour tracking accuracy compared with the other two controllers.

  • PDF

Linerly Graded Encoder for High Resolution Angle Control of SRM Drive

  • Lee, Sang-Hun;Lim, Heon-Ho;Park, Sung-Jun;Ahn, Jin-Woo;Kim, Cheul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.185-192
    • /
    • 2001
  • In SRM drive, the ON·OFF angles of each phase switch should be accurately controlled in order to control the torque and speed stably. The accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor, that are used to provide the information of the rotor position and to control the SRM power circuit, respectively. However, as the speed increases, the amount of the switching angle deviation from the preset values is also increased. Therefore, the low cost encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper, As a result, a stable high speed SRM drive can be achieved by the high resolution switching angle control and it is verified from the experiments that the proposed encoder the logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

Speed Control for PMSM in Elevator Drive System Using Fuzzy Controller (퍼지제어기를 이용한 엘리베이터 구동용 영구자석형 동기전동기의 속도제어)

  • Hwang S. M.;Yu J. S.;Won C. Y.;Kim K. S.;Choi S. W.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.655-659
    • /
    • 2004
  • This paper proposes a fuzzy logic based vector control for the gearless traction machine drive systems using a permanent-magnet synchronous motor (PMSM). The performance of the proposed Fuzzy Logic Control(FLC)-based PMSM drive are investigated and compared to those obtained from the conventional PI controll-based drive system. We have confirmed theoretically and experimentally at different dynamic operating conditions such as step change in command speed, step change in load, etc. The comparative experimental results show that the FLC is more robust and, hence, found to be a suitable replacement of the conventional Pl controller for the high-performance elevator drive system.

  • PDF

FUZZY SOGIC CONTROL FO DIRECT DRIVE ROBOT MANIPULATORS

  • Kang, Chul-Goo;Kwak, Hee-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.428-433
    • /
    • 1994
  • This investigates the feasibility of applying fuzzy ogic controllers to the motion tracking control of a direct drive robot manipulator to deal with highly nonlinear and time-varying dynamics associated with robot motion. A fuzzy logic controller with narrow shape of membership functions near zero and wide shape far away zero is analyzed. Simulation and experimental studies have been conducted for a 2 degree of freedom direct drive SCARA robot to evaluate control performances, Fuzzy logic controllers have shown control performances that are often better, or at least, as good as those of conventional PID controllers. Furthermore, the control performance of fuzzy logic controllers can be improved by selecting membership functions of narrow shapes near zero and wide shapes far away zero.

  • PDF