• Title/Summary/Keyword: Drinking Water Distribution System

Search Result 84, Processing Time 0.028 seconds

A Study on Interferences of Monochloramine in the Measurement of Ammonia by Phenate Method (Phenate 법으로 암모니아 분석시 염화아민의 방해 작용에 관한 연구)

  • Yoon, Je-Yong;Lee, Sang-Duck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.45-51
    • /
    • 1998
  • The determinations of ammonia in water for drinking purpose served as one basis of judging the sanitary quality of water for a great many years. However, presently ammonia regulation varies depending on countries. In USA and Canada, ammonia is added to water for chloramination process. However, for korea, there is ammonia regulation of treated water in Korea which should not exceed 0.5mg/l as $NH_3-N$. There was a report exceeding 0.5mg/l of ammonia in chlorinated water when the famous drinking water contamination episode happened in the downstream of Nadong River, 1994. With lack of sewer distribution system and treatment plants of domestic wastes, many water treatment plants have a difficulty of complying with ammonia regulation in treated water. Breakpoint chlorination is usually performed to get rid of ammonia. The method which is allowed to measure ammonia in Korea is Phenate method. However, it would be undesirable to use Phenate method for measuring ammonia in chlorinated water if Phenate method would not differentiate ammonia from chloramine. A good possibility of interferences in measurement of ammonia exists because Phenate method include the step of the formation of chlorine and would not differentiate chloramine which is formed as a result of reaction between chlorine and ammonia. This study was on inaccuracy of Phenate method for measuring ammonia of chlorinated water when chloramine and ammonia coexist. This study found that Phenate method measured all chlormaine as ammonia. Ammonia measurement by ion chromatography confirmed this results. Finally, the result from this study suggests that ammonia measurement by Phenate method in chlorinated water should be revised accordingly.

  • PDF

Applicability of reliability indices for water distribution networks (공급부하 시나리오에 따른 상수관망 신뢰도 지수의 적용성 분석)

  • Jeong, Gimoon;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.441-453
    • /
    • 2017
  • Water distribution networks (WDNs) supply drinking water to end users by maintaining sufficient water pressure for reliable water supply in normal and abnormal conditions. To design and operate WDNs in efficient way, it is required to quantify water supply ability of the network. Various reliability indices have been developed and applied in this field. Most of the reliability indices are calculated based on the energy within a network; that is, the total energy entered the network, the energy dissipated through water supply process, and the energy finally supplied at the nodes, etc. This study explains the energy composition in WDNs and introduces three well-known reliability indices developed based on the energy composition of the network. The three indices were applied to a study network under various demand loading scenarios that could occur in real-life operation practices. This study aimed to investigate the applicability of the reliability indices under abnormal scenarios and proposed to illustrate the spatial distribution of the system reliability in more intuitive way for proper responses to the abnormal situations.

Numerical Analysis of Mixing Flow in a Small-Scale Water Supply System (간이상수도에서의 혼합유동에 대한 수치해석)

  • Yoo, Young-Hyun;Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho;Kim, Yong-Seon;Lee, Yong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.6
    • /
    • pp.460-466
    • /
    • 2009
  • The mixing method of water and chemicals is significant in a small-scale water supply system because drinking water should be supplied with a certain quantity of remaining chemicals maintained. In the present study, the concentration distribution and the mixing index were obtained from four models, which were to find out the optimal mixing method of water and chemicals. The two models brought the good mixing effects out of the four, one for providing chemicals from the center of water supply pipe and the other for setting up the semicircle block at the downstream of the chemicals-providing pipe. As a result, the mixing effect was found out to be increased due to the diffusion and the disturbance of flows. In conclusion, these numerical results are expected to contribute to designing the optimal mixing system.

Analysis of Domestic Water Consumption Characteristics for Water Usage Purpose (가정용수의 사용 목적별 소비경향 특성분석)

  • Choi, Sun-hee;Son, Mi-na;Kim, Sang-hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Throughout the analysis of field data from water distribution system, valid parameters were determined that can be included in the water service and design plan. This study investigates water consumption patterns to understand the variation of water-demand structures utilizing the pattern analysis of domestic purpose water. Water use data were collected by a public water resources management firm in Korea, Kwater, for 140 houses monitored during three years. Flow meters were installed at the faucet for drinking water, the shower booth, the laundry machine, bathroom sink, toilet, and garden faucet. Data was filtered using multiple physically meaningful criteria to improve analysis credibility. Mann Kendall and Spearman's Rho tests were used to carry out the analysis. Distinct factors of water consumption patterns can be determined for both increasing and decreasing trends of water use. Throughout the data analysis, the characterization of terms was classified and analyzed by the condition of the location of water-demand. Analysis of this data provide a physical basis for the parameter configuration of a reasonable design for a domestic water demand prediction model.

Ammonia Removal Characteristics of Biolfilm Reactor (생물막을 이용한 상수 원수에서의 암모니아 제거 특성)

  • Shin, Hang-Sik;Lim, Kycong-Ho;Lee, Sang-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 1996
  • The presence of ammonia, usually in the form of ammonium ion ($NH_4{^+}$), can enhance bacterial growth m the distribution system and make the production of drinking water more costly if ammonium must be removed to ensure good disinfection. Removal of ammonia by biological oxidation could be economical which prevents excess chlorine dosage In this research, effects of hydraulic retention time (HRT) and media type on the ammonia removal efficiencies of submerged biofilm reactor were investigated. The biofilm reactors combined the characteristics of high biological solids capture efficiency and good hydraulic control. The results indicate that biofilms can remove over 77 percent of the ammonia with HRT of longer than 2 hr even at low temperature ranging from 14.6 to $16.6^{\circ}C$. The HRT has a significant effect on nitrification. The overall nitrification and efficiency of ammonia removal increase with increasing HRT. It has also been observed that when the fibrous media was used, the ammonia removal, nitrification rate and endurance to shock improved.

  • PDF

Vertical distribution and seasonal changes of phytoplankton communities in the Hoe-Dong Reservoir

  • Jung-Gon, Kim;Su-Youn, Kim;Sun-Hee, Kwon;Sangkyun, LEE;Gea-Jae, Joo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2000.05a
    • /
    • pp.251-254
    • /
    • 2000
  • In this study, we investigated vertical distribution and seasonal changes of phytophlankton community in the Hae-Dong Reservoir from March 1999 to Feburary 2000. This reservoir is relativly small (surface area, 2.7 $km^2$) and is the source of drinking water supply to the eastern part of Pusan City. Samples were collected at 2 sites (1, 3, and 6 m; site 1, in front of the dam; site 2, inlet). The dominant group was Bacillriophyceae at both sites (over 63%), and other groups exhibited seasonal changes (high cyanobacterial density in summer; green algal communities in winter). Chrysophyceae and Dinophyceae were maintained lower level during the study period. Along the water depth, all classess of phytoplankton did not show distintive vertical distribution at both sites except during the blue-green algal bloom in the middle of July and late September. The phytoplankton community dynamics in the Hoe-Dong Reservoir was strongly affected by the hydrological factors such as concentrated precipitation and short retention time.

  • PDF

A study on the BAC pilot plant in the Duk-san water works (덕산(德山) 정수장(淨水場)에서의 BAC Pilot plant에 관한 연구(硏究))

  • Lee, Sang-Bong;Kim, Dong-Youn;Lim, Jung-A;Lee, Won-Gwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.97-107
    • /
    • 1995
  • Today a conventional water treatment system has many problems. The ozone/GAC process, sometimes termed Biological Activated Carbon(BAC), appeared to be effective for the removal of soluble organic matters in the drinking water. The water quality of Nak-dong river in Pusan, generally shows BDOC 30-40% and NBDOC 60-70%. The pilot plant installed at the Duk-san water works that was been largest treatability(1,650,000ton/day) in Pusan. A experimental water in the pilot plant made use of the water after sand-filteration. Following results are drawn from this study. Initial adsorption velocity($DOC/DOC_o/T$) in the pure adsorption of GAG had a 0.0225, it's velocity changed to 0.006 after ozone added and the optimum ozone dose ranged of $1.4-2.0mgO_3/L$. A experimental water in the pilot plant composed with humic material(78%). Humic material composed with humic acid(20%) and fulvic acid(56%), and it's rate changed to 18 and 50% respectively after ozone added. DOC constantly decreased in the EBCTs and removal efficieny in the 15min of EBCT was 45-50%. It showed the largest removal rate of BDOC in the EBCT 5 and among the season, characteristics of removal varied. The HPC distributed over $10^6-10^7CFU/cm^3$ in the bed depth and among the season, distribution of HPC were differential.

  • PDF

Growth kinetics and chlorine resistance of heterotrophic bacteria isolated from young biofilms formed on a model drinking water distribution system (모델 상수관망에 형성된 초기 생물막에서 분리한 종속영양세균의 생장 동역학 및 염소 내성)

  • Park, Se-Keun;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.355-363
    • /
    • 2015
  • The present work quantified the growth of young biofilm in a model distribution system that was fed with chlorinated drinking water at a hydraulic retention time of 2 h. Bacterial biofilms grew on the surface of polyvinyl chloride (PVC) slides at a specific growth rate of $0.14{\pm}0.09day^{-1}$ for total bacteria and $0.16{\pm}0.08day^{-1}$ for heterotrophic bacteria, reaching $3.1{\times}10^4cells/cm^2$ and $6.6{\times}10^3CFU/cm^2$ after 10 days, respectively. The specific growth rates of biofilm-forming bacteria were found to be much higher than those of bulk-phase bacteria, suggesting that biofilm bacteria account for a major part of the bacterial production in this model system. Biofilm isolates exhibited characteristic kinetic properties, as determined by ${\mu}_{max}$ and $K_S$ values using the Monod model, in a defined growth medium containing various amounts of acetate. The lowest ${\mu}_{max}$ value was observed in bacterial species belonging to the genus Methylobacterium, and their slow growth seemed to confer high resistance to chlorine treatment (0.5 mg/L for 10 min). $K_S$ values (inversely related to substrate affinity) of Sphingomonas were two orders of magnitude lower for acetate carbon than those of other isolates. The Sphingomonas isolates may have obligate-oligotrophic characteristics, since the lower $K_S$ values allow them to thrive under nutrient-deficient conditions. These results provide a better understanding and control of multi-species bacterial biofilms that develop within days in a drinking water distribution system.

A Study on the Statistical Predictability of Drinking Water Qualities for Contamination Warning System (수질오염 감시체계 구축을 위한 수질 데이터의 통계적 예측 가능성 검토)

  • Park, No-Suk;Lee, Young-Joo;Chae, Seonha;Yoon, Sukmin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.469-479
    • /
    • 2015
  • This study have been conducted to analyze the feasibility of establishing Contamination Warning System(CWS) that is capable of monitoring early natural or intentional water quality accidents, and providing active and quick responses for domestic C_water supply system. In order to evaluate the water quality data set, pH, turbidity and free residual chlorine concentration data were collected and each statistical value(mean, variation, range) was calculated, then the seasonal variability of those were analyzed using the independent t-test. From the results of analyzing the distribution of outliers in the measurement data using a high-pass filter, it could be confirmed that a lot of lower outliers appeared due to data missing. In addition, linear filter model based on autoregressive model(AR(1) and AR(2)) was applied for the state estimation of each water quality data set. From the results of analyzing the variability of the autocorrelation coefficient structure according to the change of window size(6hours~48hours), at least the window size longer than 12hours should be necessary for estimating the state of water quality data satisfactorily.