• Title/Summary/Keyword: Drilling times

Search Result 97, Processing Time 0.027 seconds

Micro-drilling of alumina green body with diamond abrasive drills (다이아몬드 입자 전착 드릴에 의한 알루미나 성형제의 미소구멍가공)

  • 이학구;방경근;김포진;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.926-931
    • /
    • 2002
  • Although ceramic plates with many micro-hales are used as MCP (Micro-channel plate) for electron amplification, catalytic converters, filters, electrical insulators and thermal conductors in integrated circuits, the drilling of micro-hales in the ceramics is difficult because of their low thermal conductivity, high hardness and brittleness. Therefore, in this work, the machining of ceramic green body fellowed by sintering of green body was employed fur fabricating ceramic plates with many micro-holes. The micro-drilling of alumina green body was performed with diamond abrasive WC drills, and the cutting force w.r.t. drilling times was measured for the determination of toot life. From the investigation of the wear of micro-drill tip w.r.t. drilling times, the wear mechanism of tip during micro-drilling of ceramic green body was suggested.

  • PDF

A study on simplified procedure of enhanced designed implant drill (개선된 드릴 디자인을 적용한 간소화된 드릴링 과정에 관한 연구)

  • Yoon, Ji-Hoon;Jeon, Gye Rok;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang Mo
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.368-376
    • /
    • 2015
  • Purpose : The objective of this research was to develop a more simplified drilling procedure with an enhanced implant drill. Materials and Methods : The drill enhanced design factors enabled implantation of Dia. 5.0mm fixture with only 2 times drilling which is more simplified drilling procedure. The enhanced drill was designed with 2 flutes, 2-phase or 3-phase formed drill tip and 25 degrees of helix angle. The proposed drilling procedure (2 times) was compared with a general drilling process (4 times) in terms of temperature changes, cutting time and ISQ value. Results : The simplified drilling procedure indicated less heat than a conventional drilling procedure (p<0.05). The enhanced drill showed significantly shorter drilling time than a conventional drill (p<0.05). On the other hand, higher insertion torque and ISQ value were observed on the the suggested drilling procedure than the conventional drilling procedure (p<0.05). Conclusion : A simplified drilling procedure with the newly designed drill could provide higher effectiveness and safety of dental implant operations under properly controlled external conditions, such as irrigation and RPM of drilling.

The effect of low-speed drilling without irrigation on heat generation: an experimental study

  • Oh, Ji-Hyeon;Fang, Yiqin;Jeong, Seung-Mi;Choi, Byung-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.1
    • /
    • pp.9-12
    • /
    • 2016
  • Objectives: In this study we evaluated heat generation during the low-speed drilling procedure without irrigation. Materials and Methods: Ten artificial bone blocks that were similar to human D1 bone were used in this study. The baseline temperature was $37.0^{\circ}C$. We drilled into 5 artificial bone blocks 60 times at the speed of 50 rpm without irrigation. As a control group, we drilled into an additional 5 artificial bone blocks 60 times at the speed of 1,500 rpm with irrigation. The temperature changes during diameter 2 mm drilling were measured using thermocouples. Results: The mean maximum temperatures during drilling were $40.9^{\circ}C$ in the test group and $39.7^{\circ}C$ in the control group. Even though a statistically significant difference existed between the two groups, the low-speed drilling did not produce overheating. Conclusion: These findings suggest that low-speed drilling without irrigation may not lead to overheating during drilling.

A Study on Verification of NC Code of Multi-spindles Drilling for Tube Sheet in Heat Exchanger (열교환기 Tube Sheet의 다축드릴가공 검증에 관한 연구)

  • Oh, Byeong-Hwan;Lee, Hui-Gwan;Yang, Gyun-Ui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.79-83
    • /
    • 2001
  • A verification of multi-spindles drilling NC data is presented. The drilling of multi-spindles can offer productivity over three times as fast as that of single spindle. The most important things in machining tube sheet are precision of hole position and machining time. The drilling of multi-spindles has difficulties in controlling many motors to drive spindles and assign a correspondent number to each spindles. Multi-spindles drilling has different codes from CNC milling ; many subroutines, assignment of spindle, and so on. The conventional method, which inspects the NC code of the drilling, is to drill holes on a thin plate or tube sheet previously. The method results in low productivity because it consumed long machining time and welding for correction. This paper describes details of multi-spindles NC code and operation of multi-spindles drilling machine. A verification software of the multi-spindles drilling NC code is developed on the details.

  • PDF

Advancement of Blast Effect by Inducing Drill Jumbo on Automatic Drilling System (점보드릴 자동천공 시스템 도입에 의한 발파효과 향상)

  • Kim, Seung-Jun;Kim, Jeong-Gyu;Ko, Young-Hun;Ahn, Je-Min;Kim, Nam-su;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Drilling operation for blasting is an important factor to determine blast effect. Drilling errors that arise from performing drilling for blasting purposes can reduce blasting effect causing residual holes, overbreak, and heterogeneous fragmentation, etc. Automatic drilling system was induced for precise drilling. As a result, drilling error caused by spaces between holes and burden was minor at 0~2.6% and accordingly, blasting effect was improved with over 90% drilling rate, the ratio of overbreak amount to total drilling amount at 4.3%, proportion of fragmentation rock under 50cm at 89~95% and so from this analyses, it was estimated to reduce the total cycle times related to blasting process.

Verification of NC code for Nulti-Axis Drilling machines (다축 드릴 가공기의 NC 코드 검증)

  • 이희관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.263-268
    • /
    • 1999
  • The most important things to the tube the of the heat exchanger are the precision of t hole position and the quality of the drill face. Nowadays, 6 and 12 spindle multi-drilling machine controlled by CNC or used to drill holes of the tube sheet. The drilling of 12 axes can offer high speover three times as fast as the drilling of axis. However, the drilling of 12 axes h difficulty in controlling many motors to d spindles and assigning a corresponded numbe accurately to each axis. In the past, conventional method to inspect the code the drilling was machining holes on a thin plate previously which resulted in the productivity because it required a h production cost by machining and weldin time. In this thesis, there are two drilling codes different from CNC code. M code is used to control many motors and S code is used to assign a correspondent number for each axis. For increasing the productivity by removing process, this paper is intended to take simulation of the drill machining c including 6 and 12 axis on the persona computer.

  • PDF

A Study on the Optimization of Drilling Operations(II): Optimum Drilling Sequence Selection for Producing a Hole (드릴가공 최적화에 대한 연구(2): 구멍가공시 최적의 드릴가공 순서 결정)

  • Rou, Hoi-Jin
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.346-353
    • /
    • 1999
  • In this paper, the optimum drilling operation sequence which results into the minimum overall machining time required to produce a (multi-diameter) hole is identified. The operation sequence is defined as the set of ordered operations used for producing a (multi-diameter) hole. The overall machining time is derived by summing the minimum machining times of each operation assigned to a sequence. The operations represent the drilling actions of certain sizes to produce the related holes. The minimum machining time of each operation is obtained by solving the optimization problem. Finally, this paper will identify the effects of machining constraints on the overall machining times and their relationships to sequence selection.

  • PDF

Change of Hydraulic Characteristics due to Well Drilling and Well Development in an Unconsolidated Aquifer (미고결대수층에서 우물 굴착 및 개량에 의한 대수층의 수리특성 변화)

  • Kim, Byung-Woo;Kim, Gyoo-Bum;Kim, Geon-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.27-37
    • /
    • 2012
  • To investigate the effect of aquifer disturbance on hydraulic properties while well drilling at unconsolidated aquifer, the following tests were conducted: the surge block and air-surging methods, which are well development methods used after well drilling; and step-drawdown tests and constant-rate pumping tests, which are used to assess changes in the aquifer after well drilling and development. The result of step-drawdown tests indicated that drawdown for a pumping-rate of $700m^3/day$ was 21.62 m after well development, decreasing 4.39 m from 26.01 m after well drilling. The skin factor used to identify the well properties decreased from 7.92 after well drilling to 5.04 after well development, respectively, which shows the improvement of well. Constant-rate pumping tests revealed a small increase in aquifer transmissivity after well development at MW-2, -3, and -4, centering around pumping well, from $1.684{\times}10^{-3}{\sim}4.490{\times}10^{-3}m^2/sec$ to $4.002{\times}10^{-3}{\sim}4.939{\times}10^{-3}m^2/sec$. MW-1, however, showed decline in hydraulic conductivity from $1.018{\times}10^{-2}m^2/sec$ to $6.988{\times}10^{-3}m^2/sec$, which was caused by a small decrease of aquifer permeability around monitoring well MW-1 due to latent factor of air interception and clogging in aquifer during surging. This finding indicates that fine particles have an effect on hydraulic properties at unconsolidated aquifers during well drilling; therefore, we consider that well drilling and development have an effect on hydraulic properties.

An Experimental Study of Cuttings Transport in Directional Slim Hole Drilling (방향성 소구경 굴착의 입자 이송특성에 관한 연구)

  • Han, Sang-Mok;Kim, Jeong-Hwan;Hwang, Young-Kyu;Woo, Nam-Sub;Kim, Young-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.20-25
    • /
    • 2012
  • During drilling, the precipitation velocity of cuttings within an annulus depends on the density and configuration of the cuttings, and on the density, viscosity, and rheological characteristics of the drilling fluid. In directional drilling in particular, it is difficult to adjust and control the cuttings. In contrast to vertical drilling, it is very important to evaluate the flow characteristics of a drilling flow field. However, research on the transfer features of cuttings is inadequate. In this study, in order to identify transfer features of cuttings, an experiment was performed under wide-ranging conditions by constructing a slim hole annulus ($44mm{\times}30mm$) device. In this experiment, the particle volume fraction were influenced by particle size, particle concentration within the flow, pipe rotation, flow volume, and inclination of the annulus. In addition, a mathematical formula for volumetric concentration was deduced and compared to the test results and behavior of cuttings under the other drilling condition was made to be predicted. Therefore, this study can provide meaningful data for vertical and horizontal drilling, and for directional drilling.

AJM을 이용한 HDM에 의한 잔류응력 계측에 관한 연구 1

  • 이택순
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.37-42
    • /
    • 1988
  • The Hole Drilling Method(HDM) is widely used to measure residual stresses in the welded structures. The purpose of this study is to evaluate the accuracy fo measuring residual stresses when drilling the hole by Air-abrasive Jet machine(AJM). Simulated residual stresses wre introduced by applying known stresses to steel bars. These known streses were then compared with measured stresses relaxed from hole drilling. the obtained results are summarized as follows; 1) It was possible to obtain well defined holes with the nozzle designed for this study. 2) If the hole shape is not cylindrical, critical may occur. 3) In the uniaxial strain field, the measurement error of the maximum principal stress was within .+-.10 percent. The orientation angle of the maximum principal stress was within 8.deg. from the given directioin. 4) meausrements were made varying hole depths. Little or no change of stresses occurs since holse were drilled more than the depth of the 0.6 times diameter. 5) The air-abrasive jet machining for drilling holse does not cause appreciable apparent stresses which si critical to measure residual stresses.

  • PDF