• 제목/요약/키워드: Drilling Parameter

검색결과 50건 처리시간 0.023초

도로터널에서 지보패턴별 굴착지수 상관관계 고찰 (Correlation Between Drilling Parameter and Tunnel Support Pattern Using Jumbo Drill)

  • 김낙영;김성환;정형식
    • 한국터널지하공간학회 논문집
    • /
    • 제3권4호
    • /
    • pp.17-24
    • /
    • 2001
  • 본 연구에서는 시공여건이 유사한 도로터널 4개소을 선정하여 실내시험 및 막장지질조사를 실시하였고 그 결과와 점보드릴을 활용하여 얻을수 있는 비트마모율과 굴착지수의 상관관계를 지보패턴별로 분석하였다. 연구대상 4개 도로터널에 대한 평균비트마모율은 지보패턴별로 11.85%에서 3.25%로 차이를 보였고 굴착지수는 주로 파쇄대의 발달정도에 따라 변동이 발생하였다.

  • PDF

Borehole stability analysis in oil and gas drilling in undrained condition

  • Wei, Jian-Guang;Yan, Chuan-Liang
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.553-567
    • /
    • 2014
  • Borehole instability during drilling process occurs frequently when drilling through shale formation. When a borehole is drilled in shale formation, the low permeability leads to an undrained loading condition. The pore pressure in the compressed area near the borehole may be higher than the initial pore pressure. However, the excess pore pressure caused by stress concentration was not considered in traditional borehole stability models. In this study, the calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel's excess pore pressure theory. Combined with Mohr-Coulumb strength criterion, the calculation model of collapse pressure of shale in undrained condition is obtained. Furthermore, the variation of excess pore pressure and effective stress on the borehole wall is analyzed, and the influence of Skempton's pore pressure parameter on collapse pressure is also analyzed. The excess pore pressure decreases with the increasing of drilling fluid density; the excess pore pressure and collapse pressure both increase with the increasing of Skempton's pore pressure parameter. The study results provide a reference for determining drilling fluid density when drilling in shale formation.

Laser micro-drilling of CNT reinforced polymer nanocomposite: A parametric study using RSM and APSO

  • Lipsamayee Mishra;Trupti Ranjan Mahapatra;Debadutta Mishra;Akshaya Kumar Rout
    • Advances in materials Research
    • /
    • 제13권1호
    • /
    • pp.1-18
    • /
    • 2024
  • The present experimental investigation focuses on finding optimal parametric data-set of laser micro-drilling operation with minimum taper and Heat-affected zone during laser micro-drilling of Carbon Nanotube/Epoxy-based composite materials. Experiments have been conducted as per Box-Behnken design (BBD) techniques considering cutting speed, lamp current, pulse frequency and air pressure as input process parameters. Then, the relationship between control parameters and output responses is developed using second-order nonlinear regression models. The analysis of variance test has also been performed to check the adequacy of the developed mathematical model. Using the Response Surface Methodology (RSM) and an Accelerated particle swarm optimization (APSO) technique, optimum process parameters are evaluated and compared. Moreover, confirmation tests are conducted with the optimal parameter settings obtained from RSM and APSO and improvement in performance parameter is noticed in each case. The optimal process parameter setting obtained from predictive RSM based APSO techniques are speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), Air pressure (1 kg/cm2) for Taper and speed=150 (m/s), current=22 (amp), pulse frequency (3 kHz), air pressure (3 kg/cm2) for HAZ. From the confirmatory experimental result, it is observed that the APSO metaheuristic algorithm performs efficiently for optimizing the responses during laser micro-drilling process of nanocomposites both in individual and multi-objective optimization.

엑시머 레이저를 이용한 파이렉스 유리의 미세 구멍 가공 (The Experimental Study in the Micro Drilling of Excimer Laser on Pyrex Glass)

  • 이철재;김하나;정윤상;전찬봉;박영철;강정호
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.99-103
    • /
    • 2012
  • Presently, A glass is widely used in telecommunication system, optoelectronic devices and micro electro mechanical systems. Micro drilling of glass using the laser can save processing cost and improve the accuracy. This paper experiments micro drilling using KrF excimer laser on the pyrex glass of $500{\mu}m$ thickness. We have experiment to find out optimum laser machining conditions of micro drilling of glass and ablation depth and influence by processing parameter suc'h pulse repetition rate, energy density and number of pulses. Pulse repetition rate don't influence ablation depth at the micro drilling of pyrex glass. Energy density influence micro drilling of parallelism and maximum thickness that can be drilled. Ablation depth is most influenced by number of pulses.

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

Thrust Force Estimation using Flexible Neural Networks

  • Kim, Myeong-Hee;Shigeyasu Kawaji;Masaki Arao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.47.1-47
    • /
    • 2001
  • The drilling process has a great importance for the production technology due to its widerspread use in the manufacturing industry. In order to enhance a maximum production rate and prevent the drill from the damage, it is important to monitor and control the drilling system. Thrust force and cutting torque are the main output variables in the design of drilling control systems. In this paper, an alternative estimation method of thrust force by using flexible neural networks is proposed. Flexible neural network uses the sigmoid activation function with adjustable parameter in order to enhance the approximation accuracy ...

  • PDF

균질암반에서의 유압식 천공데이터 평가 (Assessment of Hydraulic Drilling Data on Homogeneous Rock Mass)

  • 김광염;김창용;김광식
    • 터널과지하공간
    • /
    • 제18권6호
    • /
    • pp.480-490
    • /
    • 2008
  • 천공탐사는 암반 굴착시 점보드릴의 유압착암기로부터 계측되는 기계량들인 천공데이터를 분석하여 암반의 특성을 평가하는 기법이다. 천공탐사는 발파공 또는 록볼트공 천공시 실시간으로 계측할 수 있기 때문에 암반을 신속하고 정량적으로 예측 및 평가할 수 있는 장점이 있다. 현재까지도 천공데이터에 관한 다양한 연구가 수행되어져오고 있지만, 암반 특성을 평가하기 위한 천공파라미터들의 항목 선정과 기 계량들의 수치적인 정량화가 정립되어 있지 않은 실정이다. 따라서 본 연구에서는 암석 및 지반 특성을 평가할 수 있는 천공파라미터의 항목 선정 및 천공시 천공데이터들 간의 관계를 파악하기 위해 균질 모형 암석 시험편을 제작하여 천공데이터를 획득하였고, 획득된 천공데이터를 이용하여 천공파라미터들의 상관관계 분석을 수행하였다. 분석 결과를 통해 유압착암기의 굴착능력은 타격에 의해 가장 큰 영향을 받음을 확인하였다.

Developing drilling rate index prediction: A comparative study of RVR-IWO and RVR-SFL models for rock excavation projects

  • Hadi Fattahi;Nasim Bayat
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.111-119
    • /
    • 2024
  • In the realm of rock excavation projects, precise estimation of the drilling rate index stands as a pivotal factor in strategic planning and cost assessment. This study introduces and evaluates two pioneering computational intelligence models designed for the prognostication of the drilling rate index, a pivotal parameter with direct implications for cost estimation in rock excavation projects. These models, denoted as the Relevance Vector Regression (RVR) optimized with the Invasive Weed Optimization algorithm (IWO) (RVR-IWO model) and the RVR integrated with the Shuffled Frog Leaping algorithm (SFL) (RVR-SFL model), represent a groundbreaking approach to forecasting drilling rate index. The RVR-IWO and RVR-SFL models were meticulously devised to harness the capabilities of computational intelligence and optimization techniques for drilling rate index estimation. This research pioneers the integration of IWO and SFL with RVR, constituting an unprecedented effort in forecasting drilling rate index. The primary objective of this study was to gauge the precision and dependability of these models in forecasting the drilling rate index, revealing significant distinctions between the two. In terms of predictive precision, the RVR-IWO model emerged as the superior choice when compared to the RVR-SFL model, underscoring the remarkable efficacy of the Invasive Weed Optimization algorithm. The RVR-IWO model delivered noteworthy results, boasting a Variance Account for (VAF) of 0.8406, a Mean Squared Error (MSE) of 0.0114, and a Squared Correlation Coefficient (R2) of 0.9315. On the contrary, the RVR-SFL model exhibited slightly lower precision, yielding an MSE of 0.0160, a VAF of 0.8205, and an R2 of 0.9120. These findings serve to highlight the potential of the RVR-IWO model as a formidable instrument for drilling rate index prediction, particularly within the framework of rock excavation projects. This research not only makes a significant contribution to the realm of drilling engineering but also underscores the broader adaptability of the RVR-IWO model in tackling an array of challenges within the domain of rock engineering. Ultimately, this study advances the comprehension of drilling rate index estimation and imparts valuable insights into the practical implementation of computational intelligence methodologies within the realm of engineering projects.

다면 드릴의 성능 해석과 최적화 (Analysis of multi-facet drill(MFD) performance and optimization of MFD geometry)

  • 이상조;윤영식
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1523-1532
    • /
    • 1990
  • 본 연구에서는 다면드릴을 연구 대상으로 하여 다면 드릴의 기하학적 형상인 자들을 이용하여 드릴 작업시 추력과 토크를 예측하는 데 적합한 절삭력 예측 모델을 유도하였으며, 추력과 토크를 최소화하는 방향으로 다면드릴의 각 형상인자를 최적화 하였다.

인공지능을 적용한 시추 굴진율 최적화 기술 동향 분석 (Analysis of Technical Trend for Drilling ROP Optimization with Artificial Intelligent)

  • 정지헌;한동권;김상호;유인항;권순일
    • 한국가스학회지
    • /
    • 제24권1호
    • /
    • pp.66-75
    • /
    • 2020
  • 시추는 석유자원 탐사와 개발에서 가장 중요하며 많은 비용이 소요되는 필수 작업이다. 그래서 시추의 효율 향상을 위한 굴진율 연구가 지속적으로 진행되어왔다. 근래에는 전통적인 수학적 모델의 단점을 극복하기 위하여 새로운 방식의 자료기반 모델이 다양한 연구자들에 의해 개발되고 있다. 자료기반 모델은 알고리즘과 매개변수의 선택이 매우 중요하다. 또한 개발된 모델의 성능향상을 위하여 실시간으로 모델을 재훈련하여 연속적인 시추작업을 실현해야한다. 이 논문에서는 최신 연구들을 조사하여 시추 최적화에서 사용된 알고리즘, 시추 매개변수, 모델 재훈련 간격에 대한 정보를 제공하고자 한다.