• Title/Summary/Keyword: Drilling Mechanism

Search Result 78, Processing Time 0.038 seconds

The Study on Residual Stress of Laser Weldment for the Heterogeneous Materials (이종재료의 레이저용접에서 잔류응력 평가)

  • 오세헌;민택기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.119-125
    • /
    • 2004
  • Generally, it is used the compensation spring to compensate the inaccuracy of screen image induced by thermal deformation in CRT monitor. Its mechanism is bi-metallic system made of heterogeneous metals and these is bonded by laser welding. But laser welding induces the non-uniform temperature distribution and locally residual stress is yielded by these temperature deviation. This paper studies residual stress of laser weldment using FEA and hole drilling method. The results are followed. In the case of heterogeneous materials weldment, higher residual stress induced in the weldment region of SUS 304 which have larger CTE than Ni 36 and residual stress on the middle of specimen is higher by 10.9% than that of its surface Measured residual stress of SUS 304 yield 481MPa and that of Ni 36 is 140.5MPa in the vicinity of the welding region. And the residual distribution is very similar in comparison with FEA result.

Development of 8-node Flat Shell Element for the Analysis of Folded Plate Structures (절판 구조물의 해석을 위한 8절점 평면 첼 요소의 개발)

  • 최창근;한인선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.234-241
    • /
    • 1999
  • In this study, an improved 8-node flat shell element is presented for the analysis of shell structure, by combining 8-node membrane element with drilling degree-of-freedom and 8-node plate bending element based on the recently presented technique. Firstly, 8-node membrane element designated as CLM8 is presented in this paper. The element has drilling degree-of.freedom in addition to transitional degree-of-freedom. Therefore the element possesses 3 degrees-of-freedom per each node which as well as the improvement of the element behavior, permits an easy connection to other element with rotational degree-of -freedom. Secondly. 8-node flat shell element was composed by adding 8-node Mindlin plate bending element to the membrane element. The behavior of the introduced plate bending element is further improved by combined use of nonconforming displacement modes, selectively reduced integration scheme and assumed shear strain fields. The element passes in the patch test, doesn't show spurious mechanism and doesn't produce shear locking phenomena. Finally, Numerical examples are presented to show the performance of flat shell element developed in the present study.

  • PDF

The Hammer Energy Delivered to the Drilling Rod in the SPT 1 (표준관입시험시 롯드에 전달되는 해머의 낙하에너지 평가 1)

  • 조성민;정종홍;김동수;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.469-476
    • /
    • 2001
  • The Ν-value in the standard penetration test(SPT) is affected by the magnitude of the rod penetration energy transmitted from the falling hammer as well as the geotechnical characteristics of the ground. Understanding of the striking energy efficiency in the SPT equipment is getting important for that reason. The energy efficiencies of the doughnut hammer with the hydraulic lift system and the automatic trip hammer system were investigated through field tests using the instrumented rod and wave-signal acquisition systems including the pile driving analyzer(PDA) . The rod energy ratio, ΕR$\_$r/ was defined as the ratio of the energy delivered to the drilling rod to the potential free-fall energy of the hammer. It appears that the type of the hammer and lift/drop system had a strong influence on the energy transfer mechanism and ΕR$\_$r/ also varies according to the energy instrumentation system and the analysis methods.

  • PDF

The Hammer Energy Delivered to the Drilling Rod in the SPT 2 (표준관입시험시 롯드에 전달되는 해머의 낙하에너지 평가 2)

  • 조성민;정종흥;이우진;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.71-78
    • /
    • 2002
  • The N-value from the standard penetration test(SPT) is affected by the magnitude of the rod penetration energy transmitted from the falling hammer as well as the geotechnical characteristics of the ground. Understanding of the striking energy efficiency in the SPT equipment is getting important for that reason. The energy efficiencies of the various type of equipment were investigated through field tests using the instrumented rod and wave-signal acquisition systems including the pile driving analyzer(PDA). The rod energy ratio, ERr was defined as the ratio of the energy delivered to the drilling rod to the potential free-fall energy of the hammer. It appears that the type of the hammer and lift/drop system had a strong influence on the energy transfer mechanism and ERr also varies according to the energy instrumentation system and the analysis methods.

  • PDF

A Cause Analysis of Fatigue Failure of Fuel Pump Block Material(CK35) for Marine Engine (선박 엔진용 Fuel Pump Block 소재(CK35)의 피로파손 원인규명)

  • Choi Sung Jong;Kang Chang Won;Kim Tae Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.663-670
    • /
    • 2005
  • DIN CK35 (JIS S35CK) steels have been used as a material in fuel pump blocks for marine engines. Failures in the inner surface of a drilling hole, due to the initiation of fatigue cracks have been frequently reported. However, the mechanism initiating these cracks and growths has not been clearly diagnosed yet. This study was conducted using a scraped fuel pump block, containing an initiated fatigue crack in the inner surface of a drilling hole. Initially, the cracks and fractured surfaces inside the block were investigated using an optical microscope and a SEM (Scanning Electron Microscope). In addition, microstructure observation, fatigue life test and fatigue crack growth test were performed using a specimen, which was taken from the same block. Results from these tests are summarized as follows; (1) The early crack in the block was supposed to occur inside the inner surface of the drilling hole. (2) The fatigue endurance of this material was about 330 Mpa. (3) The early crack was generated in the cavitations created by the breakdown of a big inclusion, or separation between the big inclusion and the base metal, in which the fundamental ingredients of the inclusion were C, 5, and Mn. (4) In order to prevent these types of failures, the suppression of inclusions inflow by improving the casting process, formation of fine inclusions by applying a heat treatment process, and coating of the surface of the drilling hole were required.

The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation

  • Zhu, Xiaohua;Liu, Weiji
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.195-204
    • /
    • 2018
  • Based on theories of rock mechanics, rock fragmentation, mechanics of elasto-plasticity, and energy dissipation etc., a method is presented for evaluating the rock fragmentation efficiency by using plastic energy dissipation ratio as an index. Using the presented method, the fragmentation efficiency of rocks with different strengths (corresponding to soft, intermediately hard and hard ones) under indentation is analyzed and compared. The theoretical and numerical simulation analyses are then combined with experimental results to systematically reveal the fragmentation mechanism of rocks under indentation of indenter. The results indicate that the fragmentation efficiency of rocks is higher when the plastic energy dissipation ratio is lower, and hence the drilling efficiency is higher. For the rocks with higher hardness and brittleness, the plastic energy dissipation ratio of the rocks at crush is lower. For rocks with lower hardness and brittleness (such as sandstone), most of the work done by the indenter to the rocks is transferred to the elastic and plastic energy of the rocks. However, most of such work is transferred to the elastic energy when the hardness and the brittleness of the rocks are higher. The plastic deformation is small and little energy is dissipated for brittle crush, and the elastic energy is mainly transferred to the kinetic energy of the rock fragment. The plastic energy ratio is proved to produce more accurate assessment on the fragmentation efficiency of rocks, and the presented method can provide a theoretical basis for the optimization of drill bit and selection of well drilling as well as for the selection of the rock fragmentation ways.

The influence of Guide Pads in the High Precision Cutting Process of Burnishing Drill (고정밀 가공을 위한 Bunishing Drill의 Guide Pad 영향)

  • 김종성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.80-84
    • /
    • 1996
  • The effects of guide pads on burnishing action and accuracy of machined hole are investigated in drilling with burnishing drill using a speciaaly designed tool experimentally. The cutting forces are balanced at the small forward regions of guide pads. The burnishing action takes place under a high contact pressure between the bore wall and those regions. The over size mechanism of machined hole by the guide pads is discussed.

  • PDF

A Study on Improving the Impact Force of Impact Hammer Drill (충격햄머드릴의 타격력 향상을 위한 연구)

  • 김재환;정재천;박병규;백복현
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.669-679
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism and an experimental comparison of the numerical simulation results was followed. Optimization of the impact mechanism was also performed. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder including the friction force. The friction is considered as a combination of Coulomb friction and viscous damping friction. At the moment of impact, an ideal impact model that uses restitution coefficient is used to calculate the sudden change of the striker motion. The numerically simulated impact force shows a good agreement with the experimental result and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the used design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to manitain normal operation of the hammer drill are considered as constraints. The optimized result show a remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

Excimer laser induced ablation of PMMA and PET (엑시머 레이저를 이용한 PMMA와 PET의 가공)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • The ablative decomposition mechanism of PMMA(polymethyl methacrylate) and PET(polyethylene terephthalate) with KrF excimer laser(λ : 248nm, pulse duration: 5㎱) is investigated. The UV/Vis spectrometer analysis showed that PMMA is a weak absorber and PET is a strong absorber at the wavelength of 248nm. The results(surface debris, melt, etch depth, etching shape) from drilling and direct writing experiments imply that ablation mechanism of PMMA is dominated by photothermal process, while that of PET is dominated by photochemical process.

  • PDF

A study of excimer laser ablation of polymer (폴리머의 엑시머레이저 어블레이션에 관한 연구)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1857-1860
    • /
    • 2003
  • The ablative decomposition mechanism of PMMA(polymethyt methacrylate), PET(polyethylene terephthalate) and PC(polycarbonate) with KrF excimer laser(λ: 248nm, pulse duration: 5ns) is investigated. The UV/Vis spectrometer analysis showed that PMMA is a weak absorber and PET, PC are a strong absorber at the wavelength of 248nm. The results(surface debris, melt, etch depth, etching shape) from drilling and direct writing experiments imply that ablation mechanism of PMMA is dominated by photothermal process, while that of PET, PC are dominated by photochemical process.

  • PDF