• Title/Summary/Keyword: Drill diameter

Search Result 125, Processing Time 0.018 seconds

Interactions between pre-existing large pipelines and a new tunnel (기존 대구경 파이프라인과 신설터널간의 상호작용)

  • Jeong, Sun-Ah;Choi, Jung-In;Hong, Eun-Soo;Chun, Youn-Chul;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.175-188
    • /
    • 2009
  • When a new tunnel is excavated by the drill and blast method near pre-existing underground structures or tunnels due to the region restricted condition such as urban area, the ground will be relaxed by the excavation. In this case, issues can be created in terms of stability of pre-existing underground structures. One of major factors determining the stability of pre-existing underground structures can be a separation distance between pre-existing underground structures and a newly excavated tunnel. The region of ground relaxation defined by the plastic zone due to new excavation can be varied by separation distance. In this study, in other to estimate an influence of new tunnel excavation in terms of separation distance on the stability of pre-existing large pipelines, two-dimensional scaled model tests using plaster were performed for six models which have a different separation distance, The results show that based on the analysis of induced displacement during tunnel construction, the displacement decreases as the separation distance between large pipeline and new tunnel is increased until the distance is 2.5 times of pipeline diameter. Beyond this point, however, the displacement has become stabilized.

Effect of Calvarial Cell Inoculated Onto the Biodegradable Barrier Membrane on the Bone Regeneration (흡수성 차폐막에 접목된 두개관골세포의 골조직 재생에 미치는 영향)

  • Yu, Bu-Young;Lee, Man-Sup;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.483-509
    • /
    • 1999
  • Biodegradable barrier membrane has been demonstrated to have guided bone regeneration capacity on the animal study. The purpose of this study is to evaluate the effects of cultured calvarial cell inoculated on the biodegradable barrier membrane for the regeneration of the artificial bone defect. In this experiment 35 Sprague-Dawley male rats(mean BW 150gm) were used. 30 rats were divided into 3 groups. In group I, defects were covered periosteum without membrane. In group II, defects were repaired using biodegradable barrier membrane. In group III, the defects were repaired using biodegradable barrier membrane seeded with cultured calvarial cell. Every surgical procedure were performed under the general anesthesia by using with intravenous injection of Pentobarbital sodium(30mg/Kg). After anesthesia, 5 rats were sacrificed by decapitation to obtain the calvaria for bone cell culture. Calvarial cells were cultured with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. The number of cell inoculated on the membrane were $1{\times}10^6$ Cells/ml. The membrane were inserted on the artificial bone defect after 3 days of culture. A single 3-mm diameter full-thickness artificial calvarial defect was made in each animal by using with bone trephine drill. After the every surgical intervention of animal, all of the animals were sacrificed at 1, 2, 3 weeks after surgery by using of perfusion technique. For obtaining histological section, tissues were fixed in 2.5% Glutaraldehyde (0.1M cacodylate buffer, pH 7.2) and Karnovsky's fixative solution, and decalcified with 0.1M disodium ethylene diaminetetraacetate for 3 weeks. Tissue embeding was performed in paraffin and cut parallel to the surface of calvaria. Section in 7${\mu}m$ thickness of tissue was done and stained with Hematoxylin-Eosin. All the specimens were observed under the light microscopy. The following results were obtained. 1 . During the whole period of experiment, fibrous connective tissue was revealed at 1week after surgery which meant rapid soft tissue recovery. The healing rate of defected area into new bone formation of the test group was observed more rapid tendency than other two groups. 2 . The sequence of healing rate of bone defected area was as follows ; test group, positive control, negative control group. 3 . During the experiment, an osteoclastic cell around preexisted bone was not found. New bone formation was originated from the periphery of the remaing bone wall, and gradually extended into central portion of the bone defect. 4 . The biodegradable barrier membrane was observed favorable biocompatibility during this experimental period without any other noticeable foreign body reaction. And mineralization in the newly formed osteoid tissue revealed relatively more rapid than other group since early stage of the healing process. Conclusively, the cultured bone cell inoculated onto the biodegradable barrier membrane may have an important role of regeneration of artificial bone defects of alveolar bone. This study thus demonstrates a tissue-engineering the approach to the repair of bone defects, which may have clinical applications in clinical fields of the dentistry including periodontics.

  • PDF

Accuracy of 5-axis precision milling for guided surgical template (가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구)

  • Park, Ji-Man;Yi, Tae-Kyoung;Jung, Je-Kyo;Kim, Yong;Park, Eun-Jin;Han, Chong-Hyun;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • Purpose: The template-guided implant surgery offers several advantages over the traditional approach. The purpose of this study was to evaluate the accuracy of coordinate synchronization procedure with 5-axis milling machine for surgical template fabrication by means of reverse engineering through universal CAD software. Materials and methods: The study was performed on ten edentulous models with imbedded gutta percha stoppings which were hidden under silicon gingival form. The platform for synchordination was formed on the bottom side of models and these casts were imaged in Cone beam CT. Vectors of stoppings were extracted and transferred to those of planned implant on virtual planning software. Depth of milling process was set to the level of one half of stoppings and the coordinate of the data was synchronized to the model image. Synchronization of milling coordinate was done by the conversion process for the platform for the synchordination located on the bottom of the model. The models were fixed on the synchordination plate of 5-axis milling machine and drilling was done as the planned vector and depth based on the synchronized data with twist drill of the same diameter as GP stopping. For the 3D rendering and image merging, the impression tray was set on the conbeam CT and pre- and post- CT acquiring was done with the model fixed on the impression body. The accuracy analysis was done with Solidworks (Dassault systems, Concord, USA) by measuring vector of stopping’s top and bottom centers of experimental model through merging and reverse engineering the planned and post-drilling CT image. Correlations among the parameters were tested by means of Pearson correlation coefficient and calculated with SPSS (release 14.0, SPSS Inc. Chicago, USA) ($\alpha$ = 0.05). Results: Due to the declination, GP remnant on upper half of stoppings was observed for every drilled bores. The deviation between planned image and drilled bore that was reverse engineered was 0.31 (0.15 - 0.42) mm at the entrance, 0.36 (0.24 - 0.51) mm at the apex, and angular deviation was 1.62 (0.54 - 2.27)$^{\circ}$. There was positive correlation between the deviation at the entrance and that at the apex (Pearson Correlation Coefficient = 0.904, P = .013). Conclusion: The coordinate synchronization 5-axis milling procedure has adequate accuracy for the production of the guided surgical template.

Effects Of Cultured Bone Cell On The Regeneration Of Alveolar Bone (배양골세포 이식이 치조골재생에 미치는 영향)

  • Jeong, Soon-Joon;Herr, Yeek;Park, Joon-Bong;Lee, Man-Sup;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.1-26
    • /
    • 1996
  • This study was performed to estimate the effects of cultured bone cell inoculated on porous type hydroxyaptite for the regeneration of the artificial alveolar bone defect. In this experiment 3 beagle dogs were used, and each of them were divided into right and left mandible. Every surgical intervention were performed under the general anesthesia by using with intravenous injection of Pentobarbital sodium(30mg/Kg). To reduce the gingival bleeding during surgery, operative site was injected with Lidocaine hydrochloride(l:80,000 Epinephrine) as local anesthesia. After surgery experimental animal were feeded with soft dietl Mighty dog, Frisies Co., U.S.A.) for 1 weeks to avoid irritaion to soft tissue by food. 2 months before surgery both side of mandibular 1st premolar were extracted and bone chips from mandibular body were obtained from all animals. Bone cells were cultured from bone chips obtained from mandible with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. Porous type hydroxyapatite were immerse into the high concentrated cell suspension solution, and put 4 hours for attachin the cells on the surface of hydroxyapatite. Graft material were inserted on the artificial bone defect after 3 days of culture. Before insertion of cellinoculated graft material, scanning electronic microscopic observation were performed to confirm the attachment and spreading of cell on the hydroxyapatite surface. 3 artificial bone defects were made with bone trephine drill on the both side of mandible of the experimental animal. First defect was designed without insertion of graft material as negative control, second was filled with porous replamineform hydroxyapatite inoculated with cultured bone marrow cells as expermiental site, and third was filled with graft materials only as positive control. The size of every artificial bone defect was 3mm in diameter and 3mm in depth. After the every surgical intervention of animals, oral hygiene program were performed with 1.0% chlorhexidine digluconate. All of the animals were sacrificed at 2, 4, 6 weeks after surgery. For obtaining histological section, tissus were fixed in 10% Buffered formalin and decalcified with Planko - Rycho Solution for 72hr. Tissue embeding was performed in paraffin and cut parallel to the surface of mandibular body. Section in 8um thickness of tissue was done and stained with Hematoxylin - Eosin. All the specimens were observed under the light microscopy. The following results were obtained : 1. In the case of control site which has no graft material, less inflammatory cell infiltration and rapid new bone forming tendency were revealed compared with experimental groups. But bone surface were observed depression pattern on defect area because of soft tissue invasion into the artificial bone defect during the experimental period. 2. In the porous hydroxyapatite only group, inflammatory cell infiltration was prominet and dense connective tissue were encapsulated around grafted materials. osteoblastic activity in the early stage after surgery was low to compared with grafted with bone cells. 3. In the case of porous hydroxyapatite inoculated with bone cell, less inflammatory cell infiltration and rapid new bone formation activity was revealed than hydroxyapatite only group. Active new bone formation were observed in the early stage of control group. 4. The origin of new bone forming was revealed not from the center of defected area but from the surface of preexisting bony wall on every specimen. 5. In this experiment, osteoclastic cell was not found around grafted materials, and fibrovascular invasion into regions with no noticeable foreign body reaction. Conclusively, the cultured bone cell inoculated onto the porous hydroxyapatite may have an important role of regeneration of artificial bone defects of alveolar bone.

  • PDF

An Anatomical Study of the Posterior Tympanum (한국인 중이강후벽에 관한 형태해부학적 고찰)

  • 양오규;윤강묵;심상열;김영명
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1982.05a
    • /
    • pp.17.2-19
    • /
    • 1982
  • The sinus tympani is subject to great variability in the size, shape and posterior extent. A heavy compact bony zone, especially in the posterior portion and the narrow space between the facial nerve and posterior semicircular canal are the limitation of surgical approach. The facial recess should be opened, creating a wide connection between the mesotympanum and mastoid in the Intact canal wall tympanoplasty with mastoidectomy. The surgically created limits of the facial recess are the facial nerve medially, the chorda tympani laterally and the bone adjacent to the incus superiorly. Using adult Korean's thirty-five temporal bones, the authors measured the osteologic reslationship in the posterior tympanum, especially sinus tympani and facial recess. The result was as followed. 1. The average distance from the anterior end of the pyramidal eminence. 1) to the edge of the sinus tympani directly posterior was 2.54(1.05-5.40)mm. 2) to the maximum posterior extent was 3.22(1.25-7.45)mm. 3) to the maximum cephaled extent was 0.67 (0.40-1.75)mm. 2. The boundary of the sinus tympani was 82.9% from the lower margin oval window to the upper margin round window niche. 3. The deepest part of the sinus tympani was 62.9% in the mid portion, between the ponticulus and subiculum. 4. The oblique dimension from the fossa incudis above to the hypotympanum below was 8.13(7.90-9.55)mm. 5. The transverse dimensions midway between the oval window above and round window below was 3.00(2.85-3.45)mm. 6. The transverse dimension at the level of the fossa incudis was 1.81(1.40-2.15)mm. 7. The facial nerve dehiscence was 14.3%. 8. Anterior-posterior diameter of the footplate was 2.98(2.85-3.05) mm. 9. The average distance from the footplate. 1) to the cochleariform process was 1.42(1.35-1.55) mm. 2) to the round window niche was 1.85(1.45-2.10) mm.

  • PDF