• Title/Summary/Keyword: Drill Wear

Search Result 75, Processing Time 0.021 seconds

Real-Time Prediction of Electrode Wear for the Small Hole Pass-Through by EDM-drill (방전 드릴을 이용한 미세 홀 관통 공정의 전극 소모량 실시간 예측)

  • Choi, Yong-Chan;Huh, Eun-Young;Kim, Jong-Min;Lee, Cheol-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.268-274
    • /
    • 2013
  • Electric discharge machining drill (EDM-drill) is an efficient process for the fabrication of micro-diameter deep metal hole. As there is non-physical contact between tool (electrode) and workpiece, EDM-drill is widely used to machine the hard machining materials such as high strength steel, cemented carbide, titanium alloys. The electro-thermal energy forces the electrode to wear out together with the workpiece to be machined. The electrode wear occurs inside of a machining hole. and It causes hard to monitor the machining state, which leads the productivity and the quality to decrease. Thus, this study presents a methodology to estimated the electrode wear amount while two coefficients (scale factor and shape factor) of the logarithmic regression model are evaluated from the experiment result. To increase the accuracy of estimation model, the linear transformation method is adopted using the differences of initial electrode wear differences. The estimation model is verified through experiment. The experimental result shows that within minute error, the estimation model is able to predict accurately.

Wear assessment of the WC/Co cemented carbidetricone drillbits in an open pit mine

  • Saeidi, Omid;Elyasi, Ayub;Torabi, Seyed Rahman
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.477-493
    • /
    • 2015
  • In rock drilling, the most important characteristic to clarify is the wear of the drill bits. The reason that the rock drill bits fail with time is wear. In dry sliding contact adhesive wear deteriorates the materials in contact, quickly, and is the result of shear fracture in the momentary contact joins between the surfaces. This paper aims at presenting an overview of the assessment of WC/Co cemented carbide (CC) tricone bit in rotary drilling. To study wear of these bits, two approaches have been used in this research. Firstly, the new bits were weighted before they mounted on the drill rigs and also after completion their useful life to obtain bit weight loss percentage. The characteristics of the rock types drilled by using such this bit were measured, simultaneously. Alternatively, to measure contact wear, namely, matrix wear a micrometer has been used with a resolution of 0.02 mm at different direction on the tricone bits. Equivalent quartz content (EQC), net quartz content (QC), muscovite content (Mu), coarseness index (CI) of drill cuttings and compressive strength of rocks (UCS) were obtained along with thin sections to investigate mineralogical properties in detail. The correlation between effective parameters and bit wear were obtained as result of this study. It was observed that UCS shows no significant correlation with bit wear. By increasing CI and cutting size of rocks wear of bit increases.

A Study on In-Process Monitoring of Drill Wear by Acoustic Emission (음향방출에 의한 드릴 마멸에 감시에 관한 연구)

  • 윤종학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.38-45
    • /
    • 1996
  • This study was focused on the prediction of the approprite tool life by clarifying the correlation between progressive drill wear and AE signal. on drilling SM45C the following results have been obtained; RMSAE, AE CUM-CNTS had a tendency to increase slowly according to wear size, at 1000rpm, 150mm/min However, these increased suddenly in the range of 0.20~0.22mm wear, about 102 holes and had a tendency to go up and down until the drilling was impossible. The sudden increase of AE signals shows that something is wrong and it is closely connected with drill wear and chipping. It also makes the working surface bad From the above results, AE signals could be used to monitor the drill's condition and to determine the right time to change tools.

  • PDF

A Study on the Detection of the Abnormal Tool State in Drilling of Hot-rolled High Strength Steel (열연강판의 드릴링시 공구의 이상상태 검출에 관한 연구)

  • 신형곤;김민호;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.888-891
    • /
    • 2000
  • Drilling is one of the most important operations in machining industry and usually the most efficient and economical method of cutting a hole in metal. From automobile parts to aircraft components, almost every manufactured product requires that holes are to be drilled for the purpose of assembly, creation of fluid passages, and so on. It is therefore desirable to monitor drill wear and hole quality changes during the hole drilling process. One important aspect in controlling the drilling process is drill wear status monitoring. With the monitoring, we may decide on optimal timing for tool change. The necessity of the detection of tool wear, fracture and the abnormal tool state has been emphasized in the machining process. Accordingly, this paper deals with the cutting characteristics of the hot-rolled high strength steels using common HSS drill. The performance variables include drill wear data obtained from drilling experiments conducted on the workpiece. The results are obtained from monitoring of the cutting force and Acoustic Emission (AE) signals, and from the detection of the abnormal tool state with the computer vision system.

  • PDF

Diagnosis of the Drill Wear Based on Fuzzy Logic (퍼지 논리을 이용한 드릴의 마모 상태 진단)

  • 권오진;최성주;조현찬
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.74-77
    • /
    • 2001
  • One of the most important technology in PA(Factory Automation) is to construct the diagnostic system for manufacturing process. To improve the productibility in the factory, the state of tools such as bite, drill, endmill should be monitored continuously. In this study, fuzzy logic was used to check the wear of drill in drilling process. The input variables to construct the fuzzy rules are cutting force and the rate of cutting force's change. The experiment was done with the fixed spindle speed and feed rate in cutting condition.

  • PDF

A Study on the PCB(Printed Circuit Board) Drilling by Air Bearing Spindle (공기 베어링 스핀들을 애용한 PCB 드릴링에 관한 연구)

  • Bae Myung-Il;Kim Sang-Jin;Kim Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.15-20
    • /
    • 2005
  • This paper describes the PCB drilling using an ultra high-speed air bearing spindle system and micro drill. For this research, we have developed the ultra high-speed air bearing spindle of 125,000 rpm and made an experiment for the application possibility in the PCB drilling. In order to estimate the drilling performance, we have investigated the size and damage of drilled hole, and the wear of drill at 90,000rpm. Results are as follows; we have confirmed the possibility in the PCB drilling of air bearing spindle. In case of micro-drilling PCB at $0.1mm\sim0.3mm$, the increase in the number of drilling has resulted in a bigger size of holes and also a bigger size of damage. It has been found that the wear of micro drill tends to concentrate in the main cutting edge.

A Study on the Wear Condition Diagnosis of Grinding Wheel in Micro Drill-bit Grinding System (마이크로 드릴비트 연마 시스템 연삭휠의 마모 진단 연구)

  • Kim, Min-Seop;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.77-85
    • /
    • 2022
  • In this study, to diagnose the grinding state of a micro drill bit, a sensor attachment location was selected through random vibration analysis of the grinding unit of the micro drill-bit grinding system. In addition, the vibration data generated during the drill bit grinding were collected from the grinding unit for the grinding wheels under the steady and worn conditions, and data feature extraction and dimension reduction were performed. The wear of the micro-drill-bit grinding wheel was diagnosed by applying KNN, a machine-learning algorithm. The classification model showed excellent performance, with an accuracy of 99.2%. The precision, recall and f1-score were higher than 99% in both the steady and wear conditions.

Diagnosis of the Drill Wear Based on Fuzzy Logic (퍼지 논리를 이용한 드릴의 마모 상태 진단)

  • 권오진;최성주;조현찬
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.833-836
    • /
    • 2001
  • One of the most important technology in Factory Automation and Unmanned Automation is to construct the diagnostic system for manufacturing process. To improve the productivity in cutting process, the state of tools such as bite, drill, endmill should be monitored continuously. In this study, fuzzy logic was used to check the wear of drill in drilling process. The input variables to construct the fuzzy rules are cutting force and the rate of cutting force's change. The experiment was done with the fixed spindle speed and feed rate in cutting condition. The proposed algorithm is verified by comparing Fuzzy wear with real wear measured.

  • PDF

A Study of Electrode Wear Estimation and Compensation for EDM Drill (방전 드릴링에서 전극 소모량 예측 및 보정)

  • Lee, Cheol-Soo;Choi, In-Hugh;Choi, Young-Chan;Kim, Jong-Min;Heo, Eun-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.3
    • /
    • pp.149-155
    • /
    • 2013
  • Electric discharging machining (EDM) is commonly adopted to machine the precise and tiny part when it is difficult to meet the productivity and the tolerance by the conventional cutting method. The die-sinking EDM method works well to machine the micro-parts and the perpendicular wall of die and mould, whereas EDM drilling, called super drill, is excellent to machine the deep and narrow hole regardless the material hardness and the hole location. However, the electrode wear is rapid compared to the conventional cutting tool and makes it difficult to control the electrode feeding and to machine precisely. This paper presents an efficient method to estimate the electrode wear using hole pass-through experiment while the stochastic method is used to compensate for the estimation model. To validate the proposed method, the commercial EDM drill machine is used. The experiment result shows that the electrode wear amount can be predicted very precisely.

Enhancement of Wear Resistance of CoCrNiAlTi Plasma Sprayed Coatings Using Titanium Carbide

  • De-Yong Li;Chul-Hee Lee
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Large drill bits may face high hardness ore and high working pressure when working. To optimize the use effect of large drill bits and prolong the use time, it is necessary to add a layer of pressure-resistant, wear-resistant, and low-friction coating on the surface of the drill bit. In this study, CoCrNiAlTi high-entropy alloy coatings and CoCrNiAlTi (70 wt%)-TiC (30 wt%) composite coatings are successfully prepared on Q235 steel by plasma spraying. The CoCrNiAlTi (70 wt%)-TiC (30 wt%) coating consists of FCC solid solution and a small amount of TiC phase. The effect of TiC on the composition phase, microhardness, and elastic modulus of HEA coating is studied by X-ray diffractometer (XRD) and microhardness tester. The effect of TiC on the friction and wear properties of HEA coatings is investigated using a wear tester. By improving the process parameters, the metallurgical bonding between the coating and the substrate is well combined, and a coating without pores and cracks is obtained. The experimental results confirm that the microhardness, elastic modulus, and wear resistance of CoCrNiAlTi-TiC composite coating are better, and the friction coefficient is lower.