• Title/Summary/Keyword: Drift velocity

Search Result 227, Processing Time 0.022 seconds

The Effect of The Drift Velocity on The Ship Motion (표류(漂流)를 고려한 선체운동(船體運動))

  • J.H.,Hwang;Y.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.29-38
    • /
    • 1981
  • In general the drift result in ship heeling, thus it seems to be necessary to analyze the ship motion by considering both the drifting and heeling phenomena. In this paper, a drift velocity and a heeling angle are given as prior conditions, and then within the linear potential theory the hydrodynamic coefficients and wave exciting forces and moments are derived for a ship advancing and drifting with constant speeds. And numerical calculations are preformed for a cylindrical body of shiplike cross section at zerp forward velocity. The 2-D hydrodynamic forces and moments of a heeled cylinder are calculated by using the Frank Close-Fit method. These numerical results for the oscillating cylinder without drift velocity have shown better agreements with experimental data than the numerical results of Kobayashi[2]. The motion responses for a drifting cylinder are calculated ignoring the drift velocity effect in the free surface condition. The accuracy of these calculations can not be verified, because the experimental data are not available. Through these numerical calculations to so concluded that drift velocity effects on the body motion are signiffcant.

  • PDF

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

A simplified vortex model for the mechanism of vortex-induced vibrations in a streamlined closed-box girder

  • Hu, Chuanxin;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.309-319
    • /
    • 2021
  • The vortex-drift pattern over a girder surface, actually demonstrating the complex fluid-structure interactions between the structure and surrounding flow, is strongly correlated with the VIVs but has still not been elucidated and may be useful for modeling VIVs. The complex fluid-structure interactions between the structure and surrounding flow are considerably simplified in constructing a vortex model to describe the vortex-drift pattern characterized by the ratio of the vortex-drift velocity to the oncoming flow velocity, considering the aerodynamic work. A spring-suspended sectional model (SSSM) is used to measure the pressure in wind tunnel tests, and the aerodynamic parameters for a typical streamlined closed-box girder are obtained from the spatial distribution of the phase lags between the distributed aerodynamic forces at each pressure point and the vortex-excited forces (VEFs). The results show that the ratio of the vortex-drift velocity to the oncoming flow velocity is inversely proportional to the vibration amplitude in the lock-in region and therefore attributed to the "lock-in" phenomena of the VIVs. Installing spoilers on handrails can destroy the regular vortex-drift pattern along the girder surface and thus suppress vertical VIVs.

The measurement of electron drift velocity and analysis of transport coefficients in SF$_6$+$N_2$ gas (SF$_6$+$N_2$혼합기체의 전자 이동속도 측정 및 수송계수 해석)

  • 하성철;하영선
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.462-472
    • /
    • 1994
  • In this paper, electron drift velocity is experimentally measured in SF$_{6}$+N$_{2}$ Gas by induced cur-rent method and quantitaive production of electron transport coefficient is calculated by backward-prolongation of Boltzmann equation. Then electron energy distribution function and attachment coefficients are calculated. This paper can use the electron drift velocity by experimentally and the electron transport coefficient by calculated as a basic data of mixed Gas by comparing and investigating.g.

  • PDF

Analysis of vortex induced vibration frequency of super tall building based on wind tunnel tests of MDOF aero-elastic model

  • Wang, Lei;Liang, Shuguo;Song, Jie;Wang, Shuliang
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.523-536
    • /
    • 2015
  • To study the vibration frequency of super high-rise buildings in the process of vortex induced vibration (VIV), wind tunnel tests of multi-degree-of-freedom (MDOF) aero-elastic models were carried out to measure the vibration frequency of the system directly. The effects of structural damping, wind field category, mass density, reduced wind velocity ($V_r$), as well as VIV displacement on the VIV frequency were investigated systematically. It was found that the frequency drift phenomenon cannot be ignored when the building is very high and flexible. When $V_r$ is less than 8, the drift magnitude of the frequency is typically positive. When $V_r$ is close to the critical wind velocity of resonance, the frequency drift magnitude becomes negative and reaches a minimum at the critical wind velocity. When $V_r$ is larger than12, the frequency drift magnitude almost maintains a stable value that is slightly smaller than the fundamental frequency of the aero-elastic model. Furthermore, the vibration frequency does not lock in the vortex shedding frequency completely, and it can even be significantly modified by the vortex shedding frequency when the reduced wind velocity is close to 10.5.

Measurement of the Drift Velocity for Electron Swarm in a Alkali Metal Using a Induced Current Method (유도 전류법을 이용한 알칼리 금속중에서 전자군의 이동속도 측정)

  • Baek, Yong-Hyeon;Ha, Seong-Cheol;Lee, Bok-Hui;Yu, Gwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.215-218
    • /
    • 1985
  • In this paper, The electron drift velocity was measured from an experimental study of the open end heat pipe system by induced current method as alkali metal vapour was generated in ordinary region of a drift tube. The test condition was alkali metal vapour range from 3.6 to 20.1(Torr), temperature of 667 to 755(K), and E/N of $1{\times}10^{-16}$ to $1{\times}10^{-15}(v.cm^2)$. The results of this study were obtained essentially the same as the extrapolated prediction curve for electron drift velocity in the alkali metal Vapour of J. Lucas et 31 with range of E/N: $1{\times}10^{-17}$ to $1{\times}10^{-16}(v.cm^2)$, and the electron drift velocity was obtained the result an increase in alkali to E/N range from E/N $2.8{\times}10^{-17}$ to $5.6{\times}10^{-16}(v.cm^2)$ (E/N From 2.8 to 50 Td).

  • PDF

IMPROVEMENT OF DRIFT RUNNING PERFORMANCE BY STEERING SYSTEM WHICH ADDS DIFFERENTIATION STEER ASSISTANCE

  • NOZAKI H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.615-623
    • /
    • 2005
  • In this research, an effective technique was examined to improve the drift running performance. Concretely, the driver model by which the counter steer was done was assumed to the model by which the vehicle body slip angle (and the vehicle body slip angle velocity) was feed back. Next, the effectiveness of the system which added the assist steer angle corresponding to the steering wheel angle velocity to a front wheel steer angle was clarified as a drift running performance improvement technique of the vehicle. As a result, because the phase advances when the differentiation steer assistance is added, it has been understood to be able to cover the delay of the counter steer when the drift running. Therefore, it has been understood that the drift control does considerably easily. Moreover, it has been understood that the differentiation steer assistance acts effectively at the drift cornering by which the drift angle is maintained in cornering and the severe lane change with a drift at a situation. That is, it was understood to be able to settle to the drift angle of the aim quickly at the time of the drift cornering because the delay of the control steer angle of the counter steer was improved. Moreover, it was understood for the transient overshoot of the vehicle tracks to be able to decrease, and to return to the state of stability quickly at the severe lane change.

IMPROVEMENT OF RADIAL VELOCITY MEASUREMENT ACCURACY BY TELLURIC LINES (대기 흡수선을 이용한 시선속도 측정 정밀도 향상)

  • Han, In-Woo;Kim, Kang-Min;Kang, Dong-Il;Lee, Byeong-Cheol
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • We present a method to improve the RV (radial velocity) measurements accuracy by using telluric lines. Telluric lines are used to estimate the wavelength scale drift over the detector of the spectrograph. In the case of BOES, the Echelle spectrograph at BOAO (Bohyunsan Optical Astronomical Observatory), the wavelength scale drift can be several hundreds m/s over 24 hours. Due to the wavelength scale drift, the RV measurements accuracy of BOES is limited to several hundreds m/s. By estimating the wavelength scale drift by telluric lines, we can remove its effect to improve the RV measurements accuracy to about 40 m/s.

Transit Time Diodes Using Velocity Overshoot Effects for Submillimeter-Wave Frequency Range Operation (속도 오버슈트 효과를 이용하여 서브밀리미터파 주파수 영역에서 동작하는 주행 시간 다이오드)

  • 송인채
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.9-15
    • /
    • 2002
  • We propose a new transit time device to extend the operating frequency to submillimeter-wave(extreme infrared) ranges by utilizing velocity overshoot effects in the drift region. We name it a velocity overshoot transit time (OVTT) diode. This device adopts fast heterostructure tunneling as injection mechanism and a short drift region to optimize the velocity overshoot effects. To enhance dc-to-RF conversion efficiencym the drift region is designed with a bandgap grading method. Simulation results demonstrate that a VOTT diode can be operated at THz ranges.

Drift modelling and compensator design in stabilized mirror control system (거울안정화 제어시스템의 편류발생에 대한 모델해석과 자동 편류보정 회로설계방법)

  • 김영대;전병균;김도종;최태봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.367-370
    • /
    • 1991
  • There are many kinds of drift source in angular velocity feedback stabilization system. We discussed and analyzed the source of drift, and suggest the drift compensation method for null drift system. In this paper, the performance of drift compensators is tested and proved by real 2 axis mirror stabilization system and computer simulation.

  • PDF