• 제목/요약/키워드: Drift shifting

검색결과 5건 처리시간 0.015초

Drift Control for Multistory Moment Frames under Lateral Loading

  • Grigorian, Carl E.;Grigorian, Mark
    • 국제초고층학회논문집
    • /
    • 제2권4호
    • /
    • pp.355-365
    • /
    • 2013
  • The paper reports results of recent studies on the effects of column support conditions on the lateral displacements of moment frames at incipient collapse. The article presents a number of exercises in the plastic theory of structures that lead to useful design formulae. It has been shown that Drift Shifting (DS) is caused due to differences in the stiffnesses of adjoining columns, and that changes in drift ratios are more pronounced at first level column joints in both fixed as well as pinned base frames. In well proportioned moment frames, DS in the upper levels could be minimized, even reduced to zero. It has been demonstrated that DS can be eliminated in properly designed fixed and grade beam supported (GBS) moment frames. Several examples, including symbolic P-delta effects, have been provided to demonstrate the validity and the applications of the proposed ideas to the design and drift control of moment frames. The proposed methodology is exact within the bounds of the theoretical assumptions and is well suited for preliminary design and teaching purposes.

Role of accidental torsion in seismic reliability assessment for steel buildings

  • Chang, Heui-Yung;Lin, Chu-Chieh Jay;Lin, Ker-Chun;Chen, Jung-Yu
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.457-471
    • /
    • 2009
  • This study investigates the role of accidental torsion in seismic reliability assessment. The analyzed structures are regular 6-story and 20-story steel office buildings. The eccentricity in a floor plan was simulated by shifting the mass from the centroid by 5% of the dimension normal to earthquake shaking. The eccentricity along building heights was replicated by Latin hypercube sampling. The fragilities for immediate occupancy and life safety were evaluated using 0.7% and 2.5% inter-story drift limits. Two limit-state probabilities and the corresponding earthquake intensities were compared. The effect of ignoring accidental torsion and the use of code accidental eccentricity were also assessed. The results show that accidental torsion may influence differently the structural reliability and limit-state PGAs. In terms of structural reliability, significant differences in the probability of failure are obtained depending on whether accidental torsion is considered or not. In terms of limit-state PGAs, accidental torsion does not have a significant effect. In detail, ignoring accidental torsion leads to underestimates in low-rise buildings and at small drift limits. On the other hand, the use of code accidental eccentricity gives conservative estimates, especially in high-rise buildings at small drift limits.

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.

The questionable effectiveness of code accidental eccentricity

  • Ouazir, Abderrahmane;Hadjadj, Asma;Gasmi, Hatem;Karoui, Hatem
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.45-51
    • /
    • 2022
  • The need to account for accidental torsion in seismic design is no longer debatable, however, the seismic codes' requirement for accidental eccentricity has recently faced criticism. In order to get as close to real conditions as possible, this study investigated the impact of accidental torsion in symmetric RC multistory buildings caused by one of its many sources, the torsional earthquake component, and compared the results to those obtained by using the accidental eccentricity recommended by the codes (shifting the center of mass). To cover a wide range of frequencies and site conditions, two types of torsion seismic components were used: a recorded torsion accelerogram and five others generated using translation accelerograms. The main parameters that govern seismic responses, such as the number of stories (to account for the influence of all modes of vibration) and the frequency ratio (Ω) variation, were studied in terms of inter-story drift and displacement responses, as well as torsional moment. The results show that the eccentricity ratio of 5% required by most codes for accidental torsion should be reexamined and that it is prudent for computer analysis to use the static moment approach to implement the accidental eccentricity while waiting for new seismic code recommendations on the subject.

방위끌림이 없는 장애물에 대한 함정의 충돌회피 기준에 관한 연구 (A Study on the Criteria for Collision Avoidance of Naval Ships for Obstacles in Constant Bearing, Decreasing Range (CBDR))

  • 하정수;정연환
    • 한국항해항만학회지
    • /
    • 제43권6호
    • /
    • pp.377-383
    • /
    • 2019
  • 항해 중인 함정은 늘 충돌 가능성이 존재하지만 충돌회피를 위한 명확한 기동지침은 없고 함교 당직사관의 직관적 판단에 의존하는 경향이 있다. 본 연구에서는 항해 중인 함정이 방위끌림이 없는 장애물을 조우하는 상황에서 함교 당직사관을 대상으로 언제 어떻게 충돌을 회피하는지 설문조사를 실시하였다. 설문 결과를 활용하여 방위끌림이 없는 장애물 조우 상황, 주·야간 충돌 회피 방법을 분석하였다. 조함이 까다로운 지역은 평택, 목포 순이었고, 주로 협수로 내에서 발생하였다. 빈도는 4시간 항해 시 평균 1회 정도로 나타났으며, 1:1 조우 상황보다 다수 선박 조우가 많았다. 충돌침로 확인 시 전자해도보다 육안 확인 결과를 더 신뢰하였고, 충돌회피 고려 요소로 최단 접근거리, 최단 접근시간을 우선시하였다. 피항의무선과 침로유지선의 충돌회피 기동상 특별한 차이는 없었지만 주·야간 시 최단 접근거리의 차이는 존재했다. 충돌회피 시 대부분의 항해사들은 변침·변속을 함께 사용하는 것을 선호하며 타각 10~15°, 변속 ±5knots, 변침침로는 타함 함미 정방향에서 함미 가중치를 두었다. 이러한 결과들은 승조원들에게 부임 함정의 충돌 회피 기준을 제공하는데 도움이 될 것이며 나아가 AI, 빅데이터 기반의 무인함정 충돌회피 알고리즘 개발에도 적용될 것이다.