• Title/Summary/Keyword: Drawn model

Search Result 884, Processing Time 0.025 seconds

Prediction of Surface Residual Stress of Multi-pass Drawn Steel Wire Using Numerical Analysis (수치해석을 이용한 탄소강 다단 신선 와이어 표면 잔류응력 예측)

  • Lee, S.B.;Lee, I.K.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2017
  • The tensile surface residual stress in the multi-pass drawn wire deteriorates the mechanical properties of the wire. Therefore, the evaluation of the residual stress is very important. Especially, the axial residual stress on the wire surface is the highest. Therefore, the objective of this study was to propose an axial surface residual stress prediction model of the multi-pass drawn steel wire. In order to achieve this objective, an elastoplastic finite element (FE) analysis was carried out to investigate the effect of semi-die angle and reduction ratio of the axial surface residual stress. By using the results of the FE analysis, a surface residual stress prediction model was proposed. In order to verify the effectiveness of the prediction model, the predicted residual stress was compared to that of a wire drawing experiment.

Making Sense of Drawn Models for Operations of Fractions Involving Mixed Numbers

  • Noh, Jihwa
    • East Asian mathematical journal
    • /
    • v.34 no.2
    • /
    • pp.203-217
    • /
    • 2018
  • This study examined preservice elementary teachers' patterns and tendencies in thinking of drawn models of multiplication with fractions. In particular, it investigated preservice elementary teachers' work in a context where they were asked to select among drawn models for symbolic expressions illustrating multiplication with non-whole number fractions including a mixed number. Preservice teachers' interpretations of fraction multiplication used in interpreting different types of drawn models were analysed-both quantitatively and qualitatively. Findings and implications are discussed and further research is suggested.

Prediction Model of Surface Residual Stress for Multi-Pass Drawn High Carbon Steel Wire (고탄소강 다단 신선 와이어의 표면 잔류응력 예측모델)

  • Kim, D.W.;Lee, S.K.;Kim, B.M.;Jung, J.Y.;Ban, D.Y.;Lee, S.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.224-229
    • /
    • 2010
  • During the multi-pass wire drawing process, wires suffer a great amount of plastic deformation that is through the cross-section. This generates tensile residual stress at surface of drawn wires. The generated residual stress on surface is one of the problems for quality of wires so that prediction and reduction of residual stresses is important to avoid unexpected fracture. Therefore, in this study, the effect of process variables such as semi-die angle, bearing length and reduction ratio on the residual stress was evaluated through Finite Element Analysis. Based on the results of the Analysis, a prediction model was established for predicting residual stress on the surface of high carbon steel(AISI1072, AISI1082). To identify the effectiveness of the proposed model, X-ray diffraction is used to measure the residual stresses on the surface. As the result of the comparison between calculated residual stresses and measured residual stresses, the model could be used to predict residual stresses in cold drawn wire.

Evaluation of Axial Residual Stress in Multi-Pass Drawn High Carbon Steel Wire Considering Effective Stress-Strain Curve at High Strain (고변형률 영역의 유효응력-변형률 곡선을 고려한 고탄소강 다단 신선 와이어 축방향 잔류응력 평가)

  • Lee, Sang-Kon;Kim, Dae-Woon;Kim, Byung-Min;Jung, Jin-Young;Ban, Duk-Young;Lee, Seon-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.70-75
    • /
    • 2010
  • The aim of this study is to evaluate the axial residual stress in multi-pass drawn high carbon steel wire by using FE analysis and XRD. When FE analysis is applied to evaluate the residual stress in drawn wire of multi-pass drawing process, obtaining the reliable effective stress-strain curve at high strain is very important. In this study, a model, which can express the reliable effective stress-strain curve at high strain, is introduced based on the Bridgman correction and tensile test for multi-pass drawn high carbon steel wires. By using the introduced model, FE analysis was carried out to evaluate the axial residual stress in the drawn wires. Finally, the effectiveness of the FE analysis with the introduced stress-strain relation was verified by the measurement of residual stress in the drawn wires through XRD. As a result, the evaluated residual stress of FE analysis shows good agreement with the measured residual stress.

Prediction of Radial Direction Strain in Drawn Wire (인발 선재의 반경 방향 변형률 분포 예측)

  • Lee, Sang-Kon;Hwang, Sun-Kwang;Cho, Yong-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.100-105
    • /
    • 2019
  • In wire drawing, aterial deformation is concentrated on the surface of the drawn wire because of surface contact with the drawing die. Therefore, strain varies from the center to the surface of the drawn wire. In this study, based on the upper bound method, an effective strain prediction method from the center to the surface of a drawn wire was proposed. Using the proposed method, the effective strain of the drawn wire was calculated verify the proposed prediction method, the predicted effective strain was compared with the result of finite element analysis.

Evaluation of Radial Direction Non-uniform Strain in Drawn Bar (인발 봉재의 반경방향 불균일 변형률 평가)

  • Lee, S.M.;Lee, I.K.;Lee, S.Y.;Jeong, M.S.;Moon, Y.H.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.356-361
    • /
    • 2020
  • In general, the drawing process is performed in a multi-pass to meet the required shape and cross section. In the drawn material, the surface strain is relatively higher than the center due to the direct contact with the die. Therefore, a non-uniform strain distribution appears in the surface of the material where the strain is concentrated and the center having a relatively low strain, thus it is difficult to predict the strain in the drawn material. In this study, the non-uniform strain distribution was evaluated using a finite element analysis and the non-uniform strain distribution model based on the upper bound method. In addition, the relationship between the hardness and the strain was established through a simple compression test to evaluate the distribution of the strain in the experimentally multi-pass drawn bar.

Drawing Strain Distribution Model for the Two-Pass Drawing Process (2단 튜브인발 공정시 인발변형률 배분모델 재발)

  • Lee D. H;Chung U. C;Moon Y. H
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.671-677
    • /
    • 2004
  • For the large reduction in tube cross section, the tube drawing process is usually performed by two successive passes, so called first drawing and second drawing. In multi-pass drawing process, the reduction balance is important to prevent drawing cracks. Therefore in this study, the model for uniform reduction distribution in two-pass drawing process has been developed on the basis of cross sectional variation of drawn tube. For the given product geometry the model provides optimal diameter and thickness that can evenly distribute drawing reductions. The capability of model is well confirmed by finite element analysis of tube drawing process. Criteria curves at various limit strains to determine whether the drawn tube would fail during drawing process are also proposed by using newly developed model.

Job Analysis of Ubiquitous Medical Electronic Device Export by the Method of DACUM (DACUM 법을 활용한 유비쿼터스 의료전자기기 전문가의 직무분석)

  • Cho, Dong-Heon;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1192-1197
    • /
    • 2013
  • In this paper Ubiquitous Medical Electronic Device Export was defined, and it's job analysis. The authors have been defined the job and classified duties and tasks of Ubiquitous Medical Electronic Device Export. To fine what is the most efficient task for Ubiquitous Medical Electronic Device Export, we have been investigated the levels of importance, difficulty, frequency and entry in each task. A DACUM committee is composed of total 12 members, which are one facilitator, 10 panel members, one coordinator & recorder to analyze the job of Ubiquitous Medical Electronic Device Export. Following is the result of this study. First, The process began with the identification of a job title and definition of Ubiquitous Medical Electronic Device Export. Second, a job model of Ubiquitous Medical Electronic Device Export is constructed based on the results of DACUM job analysis. 5 duties and 33 tasks are analyzed. Third, occupational specification was drawn up in consultation with SME council. Fourth, duty specification was drawn up in consultation. 33 tasks that are essential in entry level of occupation are identified. Fifth, task specification was drawn up in consultation. Detail task component which include skill, materials, knowledge, equipment, achievement level and tool was specified in task specification.

Effects of Shear Strains on the Developement of Texture and Microstructure of $90\%$ Drawn Copper Wire during Annealing ($90\%$ 단면감소율로 인발된 전해동의 어닐링시 집합조직과 미세조직 발달에 미치는 전단 변형의 영향)

  • Park, Hyun;Lee, Dong-Nyung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.55-62
    • /
    • 2001
  • An electrolytic copper rod was drawn up to $90\%$ in area reduction and annealed under various conditions. The EBSD measurement of the drawn wire showed that in the center region the <111> + <100> fiber duplex texture was dominant, while in the middle and surface regions relatively defused textures developed with a little higher density in <11w>//wire axis. The inhomogeneous texture in the deformed wire gave rise to the inhomogeneous microstructure and texture after annealing. The annealing texture could be classified into the recrystallization texture developed during low temperatures and at the early stage at a high temperature and the growth texture developed after a prolonged annealing at the high temperature. The recrystallization temperature could be explained by the strain energy release maximization model and the growth texture was discussed based on the grain boundary mobility anisotropy.

  • PDF

Development of robust Calibration for Determination Sweetness of Fuji Apple fruit using Near Infrared Reflectance Spectroscopy

  • Sohn, Mi-Ryeong;Kwon, Young-Kill;Cho, Rae-Kwang
    • Near Infrared Analysis
    • /
    • v.2 no.1
    • /
    • pp.55-58
    • /
    • 2001
  • The object of this work was to investigate the influence of growing district and harvest year on calibration for sweetness (Brix) determination of Fuji apple fruit using near infrared (NIR) reflectance spectroscopy, and to develop the robust calibration across these variation. The calibration models was based on wavelength range of 1100∼2500 nm using a stepwise multiple linear regression. A calibration model by sample set of one growing district was not transferable to other growing districts. The combined calibration (data of three growing districts) predicted reasonable well against a population set drawn from all growing districts (SEP=0.69, Bias=0.075). A calibration model by sample set of one harvest year was not also transferable to other harvest years. The combined calibration (data of three harvest years) predicted well against a population set drawn from all harvest years (SEP=0.53, Bias=0.004).