• Title/Summary/Keyword: Drawing Rate

Search Result 256, Processing Time 0.024 seconds

Improvement of Manufacturing Drawings for Manufacturing Quality Assurance of Modular Housing Unit (모듈러 주거시설의 단위유닛 제작품질 확보를 위한 공장제작도서 개선 연구)

  • Hwang, Hyun-Jun;Jung, Chan-woo
    • Journal of the Korean housing association
    • /
    • v.27 no.6
    • /
    • pp.137-144
    • /
    • 2016
  • In modular architecture, manufacturing drawing which includes whole information for modular unit production is essential since works for modular unit have to be performed in manufacturing factory not construction field. Although the manufacturing drawing is important as known it is insufficient to utilize the manufacturing drawing in modular architecture project and this makes modular unit low-quality with re-work and work time delay. To prevent low-quality modular unit caused by insufficient manufacturing drawing, in this research firstly manufacturing drawing's current situation and error cases in manufacturing phase of past modular housing project were analyzed, and correlation between reduction of errors occurance frequency and improving manufacturing drawing was verified. Secondly manufacturing drawing improvement factors were deducted in interior, furniture, mechanical work phase which errors' occurance rate is high and the way of deducting manufacturing drawing lists and contents were suggested with light-weight work as an example in case of new type of errors occurance. A series of research process can contribute to good-quality modular unit by errors reduction. As a result of research, about half of errors occurance can be reduced with suggested manufacturing drawing improvement factors. And the manufacturing drawing process can contribute to modular production which have uniform quality.

Experimental Study on Minimizing Wall Thickness Thinning for Deep Drawing of Circular Shells (원통형 딥드로잉 용기의 벽 두께 감소 최소화에 관한 실험적 연구)

  • Kim, Doo-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.393-399
    • /
    • 1998
  • For minimizing wall thickness thinning of circular shells, a new stamping technology, the deep draw-ing process combined with ironing is approached and investigated. The design requirements for the deep drawing shells are to keep the optimum wall thickness with max. 10 percent thickness thinning of the initial blank thickness, to make uniform thickness strain distribution for the wall of circular shell and to improve the shape accuracy for the roundness and concentricity. In order to check the validity and effectiveness of proposed work, a sample process design is applied to a circular shell needed for a 4multi-stepped deep drawing. Through experiments, the variations of the thickness strain distribution in each drawing process are observed. Also a series of experiments are performed to investigate optimum process variables such as the geometry of tooling, radius and drawing rate. In particular, the advantage of current approach with ironing is shown in contrast to the conventional deep drawing process. From the results of proposed method, the optimum value of process variables are obtained, which contribute more uniform thickness strain distribution and better quality in the drawn product.

  • PDF

Prediction of Earings in the Deep Drawing Processes of a Cylindrical Cup (원통컵 디프드로잉 공정의 귀발생 예측)

  • 이승열;이승열;금영탁;정관수;박진무
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.222-232
    • /
    • 1995
  • The planar anisotripic FEM analysis for predicting earing profiles and draw-in amounts in the deep-drawing process is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vector and normal contact pressure. The consistent full set of governing relations, which is comprising euilbrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameters. The linear triangular membrane elements are used for depicting the formed sheet. In the numerical simulations of deep drawing processes of a flat-top cylindrical cup for 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

Earing Predictions in the Deep-Drawing Process of Planar Anisotropic Sheet-Metal (평면 이방성 박판 딥드로잉 공정의 귀발생 예측)

  • 이승열;금영탁;정관수;박진무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.118-128
    • /
    • 1994
  • The planar anisotropic FEM analysis for predicting the earing profiles and draw-in amounts in the deep-drawing processes is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vectors and the normal contact pressure. the consistent full set of governing relations, comprising equilibrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameter. The linear triangular membrane elements are used for depicting the formed sheet. with the numerical simulations of deep drawing processes of flat-top cylindrical cup for the 2090-T3 aluminum effects on the earing behavior are examined. Earing predictions made for the 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

The Effect of Aftertreatment Conditions on the Dyeability of PET Filament (Poly(ethylene terephthalate) filament의 후처리 조건이 염색성에 미치는 영향)

  • Lee, Dae-Soo;Han, Myeong-Hee
    • Textile Coloration and Finishing
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 1990
  • The crystallinity and dyeability of PET filament were studied when the conditions of drawing and heat-setting were varied. The crystaltinity of PET filament was increased as the drawing ratio and heatsetting temperature were increased. The dye uptake and dyeing rate of PET filament were decreased as the drawing ratio was increased. With increasing the heat-setting temperature, however, the dye uptake and dyeing rate were decreased at an early stage, showing the minimum at $160^{\circ}C-180^{\circ}C$ and then increased above that temperature. The thermal shrinkage of PET filament was decreased as the drawing ratio was increased, while increasing as the heat-setting temperature was increased.

  • PDF

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging (액압벌징에 의한 보온용기의 제조방법 개발)

  • Chung, Joon-Ki;Cho, Woong-Shick
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.24-31
    • /
    • 1999
  • Bulging is a forming method to shape of die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at the both ends of tube. The diameter of tube expands by hydraulic pressure in tube. at the same time, thrust at the both ends of tube. pushes tube in the direction of expansion to obtain high expanding rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by the combination method of bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging

  • Chung, Joon-Ki;Cho, Woong-Shick
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.40-46
    • /
    • 2001
  • Bulging is a forming method to shape die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at both ends of the tube. The diameter of tube expands by hydraulic pressure in tube. At the same time, thrust at both ends of the tube pushes tube in the direction of expansion to obtain high expansion rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by combining bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

Behavior of Initial Texture During Deep Drawing of AA1050 Sheets (디프드로잉시 AA1050판재의 초기 집합조직 거동에 관한 연구)

  • Choe, Si-Hun;Jo, Jae-Hyeong;O, Gyu-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.570-574
    • /
    • 1998
  • The texture evolution during deep drawing of AA1050 sheets was experimentally investigated and the lattice rotation rate was predicted using rate sensitive model with full constraints boundary conditions. The measured textures are dependent on the amount of the flange deformation and the initial crystal orientations. In the specimen parallel to RD the initial crystal orientations and the D component rotated toward the Cu component and the initial crystal orientations along the $\alpha$ fiber rotated toward the G {1 1 0}<0 0 1> and P {1 1 0} <1 1 1> components during deep drawing. In the specimen parallel to $45{\circ}$ with respect to RD the initial crystal orientations around the D component rotated about ND and the initial crystal orientations along the ${\alpha}$ fiber also rotated toward the (1 1 0) [2 3] and (1 1 0)[2 7] components about ND. In the specimen parallel to TD. the initial crystal orientations around the D component rotated toward the rotated cube and the initial crystal orientations along the ${\alpha}$ fiber rotated toward the {1 1 0} <1 1 3> component.

  • PDF

A Case Study On The Suitability Of Drawings Through Application Of BIM In Construction Management (건설사업관리 분야에서 BIM적용을 통한 도서의 적합성 검토 사례)

  • Park, Young-Jin;Song, Kyung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.33-34
    • /
    • 2017
  • The purpose of this case study is to reduce the flaw and reconstruction occur at the level of construction by determining the propriety of estimate and error on a drawing and specification at working design level through case studies of BIM application at the level of design review. As a preliminary to apply BIM technology, it is needed to review the drawing, and then it is required to define BIM range by selecting the section in which construction error occurs frequently except for the type of part that is constructed repeatedly. At the execution level, the drawing is reviewed vertically, horizontally and spatially by proceeding structure and finish modeling on the defined BIM range, and also the propriety of estimate and error on the drawing and specification are examined. We aim to raise the completion rate, improve quality of construction, reduce the cost for construction and shorten period of construction by preparing for the error on the drawing and specification in advance through this review procedures.

  • PDF

Influence of Die Shoulder Radius and Punch to Die Clearance for Multistage Deep Drawing of Complex Cylindrical Shell (원통형 용기의 다단계 디프드로잉에 대한 다이 곡률반경 및 틈새의 영향)

  • 김두환
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.262-268
    • /
    • 1999
  • This paper reviews the rules for optimizing die design and the process variables such as die shoulder radius and punch to die clearance, which are important factors in drawing the sheet metal without failures during deep drawing. To find the optimum conditions for improving deep drawability, a series of the experiments are performed, and the wall thinning and thickening variations are investigated in each process of deep drawing for a complex cylindrical shell. From the results of this proposed experiment, the optimum values of process variables are examined and discussed, and the usefulness of the present suggestion is shown.

  • PDF