• Title/Summary/Keyword: Drawing Load

Search Result 131, Processing Time 0.02 seconds

Prediction of Drawing Load in the Shape Drawing Process (이형인발공정 하중예측에 관한 연구)

  • Lee, T.K.;Lee, C.J.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.323-328
    • /
    • 2009
  • The prediction of drawing load is very important in the drawing process. However, it is not easy to calculate the drawing load for the shape drawing process through a theoretical model because of a complex arbitrary final cross section shape. The purpose of this study is to predict drawing load in shape drawing process. The cross section of product is divided with small angle as much as similar with fan-shape. The drawing load of each section was calculated by theoretical model of round to round drawing process. And the shape drawing load was determined by summation of drawing load of each section. The effectiveness of the proposed method was verified through the FE analysis and shape drawing experiment. It had a good agreement between proposed method, FE analysis and experiment within about 3% errors.

Process Design of Multi-pass Shape Drawing Considering the Drawing Stress (인발응력을 고려한 다단 형상인발 공정설계)

  • Kim, S.M.;Lee, S.K.;Lee, C.J.;Kim, B.M.;Jeong, M.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • In this study, a process design method for the multi-pass shape drawing is proposed with consideration of the drawing stress. First, the shape drawing load was calculated to evaluate the shape drawing stress, and the intermediate die shape was determined by using an electric field analysis and the average reduction ratio. In order to evaluate whether material yielding occurs at the die exit, the drawing stress was determined by using the calculated shape drawing load. Finally, FE-analysis and shape drawing experiments were conducted to validate the design of the multi-pass shape drawing process. From the results of the FE-analysis and shape drawing experiments, it was possible to produce a sound shape drawn product with the designed process. The dimensional tolerances of the product were within the allowable tolerances.

Process Design for Multi-pass Profile Drawing using Round Materials (원형소재를 이용한 프로파일 다단 형상인발 공정설계)

  • Lee, I. K.;Choi, C. Y.;Lee, S. K.;Jeong, M. S.;Lee, J. W.;Kim, D. H.;Cho, Y. J.;Kim, B. M.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.234-240
    • /
    • 2015
  • Multi-pass shape drawing is very important to produce steel profiles in round samples. In the current study, a process design system is developed for a multi-pass shape drawing. In general, the number of passes for a multi-pass shape drawing is 2 to 3 when the reduction ratio, drawing stress, and productivity are considered. Therefore, calculating the drawing stress and designing the intermediated die shapes are very important. In order to calculate the drawing stress, a shape drawing load prediction method is proposed using a general axisymmetric drawing load prediction model. An intermediate die shape design method is proposed using the initial and the final product shapes. Based on this analysis, a process design system is developed for multi-pass shape drawing for steel profiles. The system works with AutoCAD. The system was applied to design a shape drawing of a spline.

Mechanical Pressure Drive with Enhanced Downward Velocity Characteristics (슬라이드의 하강속도특성을 개선한 기계프레스의 구동부)

  • 구형욱;최호준;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.110-120
    • /
    • 1996
  • A crank-slider mechanism is driven by the rotating disk with are crank-pin guide to be applied to the deep drawing and cold forging presses. Load characteristics for different presses are summarized to see the basics of deep drawing of sheet metal and forging in terms of load-stroke relationship. Several types of conventional deep drawing presses are also shown to be compared with the ratating disk-types press. Kinematic performances by thearc guide driving mechanism are anlayzed in terms of load capaicty, stroke, and slide velocity characteristics, and they are compared with those by conventional driving , e.g. Niagara-typepress and so on. Kinematically better performances is shown by arc guide drive than those by conventional ones. The new driving mechanism is also proven to be one of the best for mass production press in terms of short cycle time. Possible applications of the arc guide press to deep drawing and cold forging work are in terms of kinematics and load capacity.

  • PDF

A Study on the Pass Schedule of Multi-Pas Shape Drawing Process for Cross Roller Guide (크로스 롤러가이드의 다단형상인발공정 패스 스케쥴에 관한 연구)

  • Lee, T.K.;Lee, C.J.;Lee, S.K.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.550-555
    • /
    • 2009
  • In the multi-pass shape drawing process, the pass schedule that includes the determination of reduction ratio and intermediate die shape is very important. This study used the equal reduction, equal load, and electric field analysis method for pass schedule of the multi-pass shape drawing. The reduction ratio was calculated by the equal reduction and equal load method. And the intermediate die shape was determined by the result of the electric field analysis and the calculated reduction ratio. The proposed pass schedule method was applied to a shape drawing for producing cross roller guide. Finally, FE-analysis and shape drawing experiment were performed to verify the effectiveness of the proposed method.

A study on the drawing characteristics of circular drawbead by the Finite Element Method (유한요소법에 의한 원형드로오비드의 인출특성에 관한 연구)

  • 신양호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.26-35
    • /
    • 1997
  • In this study, the drawing characteristics of circular drawbead are examined with the plane strain elastic-plastic FE Method. Both the clamping load and the drawing load investigated by varying the process variables such as drawbead radius, closing depth and friction condition. The effective strain induced by the draw bead is also investigated. In order to verify the results, the computed results are compared with the existing experimental results. It has been found that both the clamping load and drawing loads are related with the geometry of the bead rather than the lubrication conditions.

  • PDF

A Study on Elliptical Cup Drawing of Yoke products, Automobile (자동차 TOKE 제품의 타원용기 성형에 관한 연구)

  • 박동환;배원락;박상봉;강성수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.385-388
    • /
    • 2000
  • During the deep drawing process an initially flat blank is clamped between the die and the blank holder after which the punch moves down to deform the clamped blank into the desired shape. In general, sheet metal forming may involve stretching, drawing, bending or various combinations of those basic modes of deformation. The deformation problems of sheet metal working involve non-linearity in geometry and material. In this work, The punch load and thickness strain of electro-galvanized sheet steel (SECD) for elliptical deep drawing are examined under the various process conditions including, punch shape radius, die shape radius. The changes of punch load and thickness strain distribution of the deformed elliptical cup are affected by the size of each die shape radius.

  • PDF

A Study on the Prediction of Limit Drawing Ratio And Forming Load in Redrawing of Sheet Metal (박판의 재인발 가공 에서의 한계인발비 및 성형하중 의 예측 에 관한 연구)

  • 박장호;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 1983
  • The study is concerned with the analysis of sheet metal for the prediction of limit drawing ratio and forming load. The direct redrawing process is analyzed by using an equilibrium approach and strain increment theory both for non-workhardening material and for workhardening material. Computations are carried out numerically for the workhardening case. Limit drawing ratios are predicted for some chosen variables. The forming loads are also computed with respect to punch travel. Then the predicted loads are compared with the experimental results. For ordinary lubricated conditions, the comparison shows reasonable agreement between the theory and experimental observation. It is also shown that limit drawing ration can be increased by using a greater die angle and proper lubrication significantly reduces the punch load. Finally numerical results show that material of greater R-value and strain-hardening exponent(n)is better for direst redrawing of sheet metal.

A Study on the Static Stiffness in the Main Spindle Taper of Machin Tool (공작기계 주축 테이퍼 결합부 정강성에 관한 연구)

  • 김배석;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.149-154
    • /
    • 2001
  • This paper presents the experimental study of the static stiffness for the BT Shank(7/24 Long Taper) and the HSK Tool Shank(1/10 Short taper). The static stiffness test was performed under different experimental conditions. The results obtained are as follows ; As known in the analysis results of the Load-Deflection diagram of the 7/24 Test tool shank, it is turned out that the diagram is a linear characteristics without regard to axial drawing force and according as the axial drawing force get to the 6kN, the static stiffness of the shank increase linearly. Thus the effective axial drawing force which maintains the static stiffness of the Main spindle taper of Machine Tool is larger than 6kN. It is found that the Load-Deflection diagram with 6kN of drawing force in the 1/10 Test tool shank is characterized by non-linear. But according as the axial drawing force is increasing by the 8kN, the diagram is characterized by linear. And increasing amount of deflection is about 60%. Therefore commendable axial drawing force is larger than 8kN. As a result, considering that the actual drawing force of the Machining Center is about 1300kgf and axial drawing force 12kN is equivalent amount as a 1220kgf, it is turned out that 1/10 Test tool shank superior to 7/24 Test tool shank in the static stiffness.

  • PDF

A Study on Punch Load According to Blank Shape in Elliptical Cup Forming (타원용기 성형에서 블랭크 형상에 따른 펀치하중 변화에 관한 연구)

  • 박동환;허영민;강성수
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.235-245
    • /
    • 2001
  • Deep drawing process, one of sheet metal forming methods, is very useful in the industrial field because of its efficiency The deep drawing is affected by many process variables, such as blank shapes, shape radii of the punch and die, formability of materials and so on. Especially, blank shape is very important formability factor. In this study, in order to investigate the effects of blank shape, we suggested three kinds of blank shapes and examined friction test about three conditions. We measured punch load distribution according to punch stroke under the conditions of each punch and die shape radii and observed punch load of elliptical cup forming.

  • PDF