• Title/Summary/Keyword: Drawdown test

Search Result 47, Processing Time 0.023 seconds

Comparisons of Different Step-drawdown Test Analysis Methods; Implication for Improrvced Analysis for Step-drawdown Test Data (단계양수시험 해석 방법에 따른 우물 및 수리 상수 변동 분석)

  • An, Hyowon;Ha, Kyoochul;Lee, Eunhee;Do, Byung Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.35-47
    • /
    • 2020
  • Step-drawdown test is one of the widely-used aquifer test methods to evaluate aquifer and well losses. Various approaches have been suggested to estimate well losses using the step-drawdown test data but the uncertainties associated with data interpretation and analysis still exist. In this study, we applied three different step-drawdown test analysis methods -Jacob (1947), Labadie and Helweg (1975), Gupta (1989)- to the step-drawdown test data in Seobu-myeon, Hongseong-gun, South Korea and estimated aquifer and well losses. Comparisons of different step-drawdown test analysis methods revealed that the estimated well losses showed different values depending on the applied methods and these variations are likely to be related to the limitation of the assumptions for each analysis method. Based on the detailed analysis of time-drawdown data, we performed step-drawdown test analysis after removing outlier data during the initial stage of step drawdown test. The results showed that the application of the revised time-drawdown data could substantially decrease the error of the analysis as well as the variations in the estimated well losses from different analysis methods.

A Study on Hydraulic Drawdown Test Model and Experimental Estimation of Desorption Rate Ratios of Fuel Filters (유압 저하시험 모델과 자동차 연료필터의 토설율 측정 실험 연구)

  • 이재천;계중읍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.205-213
    • /
    • 2003
  • This study describes the mathematical equation of drawdown test model and introduces the experimental test apparatus and procedure to estimate the desorption rate ratio of a filter. The characteristics of a hydraulic filtration system of drawdown test were demonstrated by numerical simulation for various properties of filters and operation conditions. Experiments for three kinds of fuel filters were conducted according to the proposed test method. And the test results of desorption rate ratio were compared with those values anticipated in precedent multipass filtration tests. Experimental results revealed the validation of drawdown test method proposed in this study. Domestic fuel filter yielded high desorption rate ratio comparing with other foreign products, which means that the Beta ratio decreases a lot during the test. The results also showed that filtration system model could be developed including desorption rate ratio to estimate the variable Beta ratio in service life.

Effects of Selected Time on Analysis Results in Step-Drawdown Tests (단계양수시험 해석시 시간선택이 해석결과에 미치는 영향)

  • Lee Jin-Yong;Song Sung-Ho;Lee Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • Step-drawdown test has been generally conducted to evaluate productivity or efficiency of both aquifer and well. In general step-drawdown test, pumping with a low constant discharge rate is conducted in the first stage until the drawdown within the well stabilizes. And then the groundwater is pumped with a higher rate in the next step until the drawdown stabilizes once more. This process is repeated at least three times (steps), with the equal duration. In this paper we tried to review some critical problems related to the step-drawdown test, which were revealed in the process of field practices and analyses. The problems, referred in this paper are mainly associated with the incorrect conceptual approach for analysis and incomplete data collection in the field test.

Analysis of Pumping Test Data and The Prediction of Drawdown for Daejong-Chun Area (대종천유역 충적대수층의 수리성 분석 및 수위강하예측에 관한 연구)

  • Choi, Jae-Jin;Sung, Won-Mo;Hahn, Jeong-Sang
    • Economic and Environmental Geology
    • /
    • v.26 no.4
    • /
    • pp.541-549
    • /
    • 1993
  • The main goal of this paper is to determine hydraulic properties and to predict drawdown for the efficient and stable development of groundwater in the Daejong-Chun area, North of Kyungsang-Do. Based on geological survey and analysis of well logging data conducted in 1991, it is found that the type of aquifer of this area is considered to be an anisotropic unconfined aquifer with saturated thickness of 19.8 m. In order to characterize this aquifer pumping test was conducted, and the resulting drawdown data were utilized for the analysis by applying both type curve matching technique and semi-log straight line method. As a result, the average specific yield of this aquifer is estimated as 32.3%, and the average ratio of $K_H$ to $K_V$ is only 2.7, which means that gravitational effect is not significant factor for this type of aquifer. For the validation of the estimated hydraulic properties, the analytical model which was developed with Newton-Raphson iteration procedure in this study, was employed to generate the drawdown. And, the resulting drawdown was compared against actual drawdown data and it shows the excellent matches. The actual drawdown data for 9 hours of pumping were used for history matching purposes and relatively satisfactory matches were achieved in this match. Then, the model was run by using the tuned parameters that are obtained during history matching stage, and the drawdown was predicted for the next 30 years of pumping with $3,000m^3/day$ of constant pumping rate. Its result indicates that the drawdown was stabilized as 1.41 m from 20 days with $3,000m^3/day$ of constant pumping rate, which is the required amount of water to be safely supplied to this area.

  • PDF

국가지하수 관측망의 양수시험 자료 해석을 통한 대수층 특성 분석

  • 전선금;구민호;김용제;강인옥
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.487-491
    • /
    • 2004
  • For tile hydrogeological data of the National Groundwater Monitoring Wells(NGMW), a statistical analysis is made to reveal aquifer characteristics of the country. Results of the pumping and recovery test are classified into 4~5 types by the pattern of drawdown and residual drawdown curves. The analysis of aquifer characteristics shows that the hydraulic conductivity of alluvial aquifers is greater than that of fractured-rock aquifers. The hydraulic conductivity of alluvial aquifers slightly increases as the distance to the discharge area decreases. 77.5% of the NGMWs, where the distance to the discharge area is more than 100m, shows the constant head boundary. This result suggests that the fractured and the alluvial aquifers are fairly interconnected, and water can be supplied from one aquifer to tile other where pumping tests are performed. It is analyzed that the wells showing the impermeable boundary are influenced by small scale of aquifers, poor aquifer transmissivities, and impermeable layers.

  • PDF

Estimation of Hydraulic Parameters of a Fractured Rock Aquifer Using Derivative Analysis (변동량 분석을 이용한 암반대수층의 수리학적 매개변수 산출)

  • Kim, Bum-Su;Yang, Dong-Chul;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.46-52
    • /
    • 2010
  • Derivative analysis, based on the derivative of the drawdown as a function of time (i.e., rate of drawdown change), was applied to the evaluation of hydraulic parameters of the aquifer as an aid of the aquifer test interpretation based on the Theis solutions. Pumping tests were conducted at a coastal fractured aquifer in Muan county, Korea, of which the drawdown data, measured at the two observation wells, were used for derivative analysis. Wellbore storage and transition period were hard to identify at conventional log-log and semi long plots, but was easily recognized by distinctive curves of positive unit slope, hump and negative unit slope in the derivative plot. For the observation well of OW-2 at which wellbore storage and transition lasted over an hour, conventional aquifer analysis would suffer from the uniqueness problems and in further result in erroneous hydraulic parameters. Derivative analysis was found to be effective for distinguishing the drawdown data directly reflecting the aquifer property from those reflecting non aquifer effects such as wellbore storage and transition, which offers a unified methodology to yield correct hydraulic parameters from aquifer test data.

The Evaluation of Safe Yield Considered Interference Drawdown between Hot Spring Wells at Yecheon Hot Spring Area (예천온천지구내 온천공간 수위간섭을 고려한 적정양수량 평가)

  • Lee, Chol-Woo
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.405-409
    • /
    • 2007
  • There exist 5 wells drilled at the Yecheon hot spring area, the distance between the wells is about $159m{\sim}702.6m$. The safe yield of each well is controlled by interference drawdown between a pumping well and an observation well after pumping test. The well No. 2 and the well No. 5 are the closest, at the distance of 159 m; therefore interference drawdown between two wells was occurred considerably. The drawdown of the well No. 2 (an observation well) was 16.67 m; the drawdown of the well No. 5 (a pumping well) was 17.21 m. The degree of the interference is about 97% and the safe yield decreased from $750m^3/day\;to\;24m^3/day$. Significant interference between two wells is due to the fact that the aquifer has 1.5 dimensions.

Optimal Pumping Rate of a Water Well at Imgokri, Sangju City (상주시 임곡리 굴착공의 적정양수량 결정)

  • Cho, Byong-Wook;Yun, Uk;Moon, Sang-Ho;Lee, Byeong-Dae;Cho, Soo-Young;Kim, YongCheol;Hwang, Seho;Shin, Jehyun;Ha, Kyoochul
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.255-265
    • /
    • 2017
  • We have determined the optimal pumping rate of the PW-2 water well (depth=100 m) at Imgokri, Sangju City. Cutting analysis and geophysical logging data reveal water-producing horizons at 26.1-26.5, 28.0-30.0, 33, 58, and 71 m. For pumping rates of 40, 55, 70, 90, and $132m^3/d$ over 70 days, the estimated drawdown from the PW-2 well was 6.48, 11.56, 18.07, 28.99 and 60.26 m, respectively. During a constant-rate pumping test at a rate of $117m^3/d$, the cone of depression intersected an impermeable boundary after 120-150 min of pumping. Therefore, we consider the critical pumping rate for well PW-2 to be $90m^3/d$. After pumping at $90m^3/d$ for 70 days, the calculated drawdown was 28.82-31.27 m. We suggest an optimal pumping rate for well PW-2 of $70-90m^3/d$, as the optimal pumping rate should be similar to the critical pumping rate. Sharp increases in the slope of the time-drawdown relationship, dissolved oxygen concentrations, and oxidation-reduction potential during the constant-rate pumping test indicate the limited development of bedrock aquifers around PW-2.

Quantitative Evaluation for Improvement Effects of Performance After Mechanical Rehabilitation Treatments on Agricultural Groundwater Well (농업용 관정의 기계적 처리 이후 성능 개선 효과의 정량적 평가 사례)

  • Song, Sung-Ho;Lee, Byung-Sun;An, Jung-Gi
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.42-49
    • /
    • 2016
  • Step-drawdown pumping tests for identifying the improvement of groundwater well performance after rehabilitation treatments were conducted in three longstanding wells. Three selective mechanical treatment methods including power bubble, high-voltage electric pulse, and air surging were applied to these wells and the applicability of these methods to secure additional groundwater resources were evaluated quantitatively. Commonly, drawdown at final stage of stepdrawdown pumping tests after rehabilitation decreased by as much as 0.61~0.70 meters compared to those before rehabilitation. In addition, final specific drawdown values of three wells increased from 9% to 14% after rehabilitation. Formation loss coefficient and well loss coefficient decreased to 6.1% and 60.6%, respectively, indicating some clogging materials by precipitation/corrosion/microbe within pores of aquifer materials, gravel packs, and screens were effectively removed by applied methods. Decrease of formation loss coefficient was higher in the well applied by the power bubble method meanwhile high-voltage electric pulse method demonstrated the higher decrease of well loss coefficient. Additionally secured groundwater amounts after rehabilitation ranged from 23.3 to 32.1 m3/day, which account for 8~16% of initially developed pumping rates of the wells. From the results of this study, the effective selection of rehabilitation treatments considering aquifer characteristics are expected to contribute to secure groundwater resources for irrigation as well as to plan systematic management program for groundwater resources in rural area.

Geochemical Characteristics of Groundwater during the Constant and Step-drawdown Pumping Tests at the River Bank Filtration Site (장기 및 단계 양수시험 시 강변여과 지하수의 수질변화 특성)

  • Kim, Gyoobum;Shin, Seonho;Kim, Byungwoo;Park, Joonhyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.11-21
    • /
    • 2013
  • In-situ test to find the change of $Fe^{2+}$ and $Mn^{2+}$ concentrations and ion contents in groundwater was conducted during two pumping tests at the riverbank filtration site, where is the riverine area of the Nakdong River in Changnyeong-Gun. Groundwater was sampled at one pumping well and 10 monitoring wells during a 5 steps drawdown pumping test with the rates from $500m^3/day$ to $900m^3/day$ and a constant pumping test with $800m^3/day$. The change in ion concentration of groundwater was more remarkable during a step drawdown pumping test than a constant pumping test. Especially, the decrease in $Fe^{2+}$ and $Mn^{2+}$ concentrations was distinct in a step drawdown pumping test and it happens predominantly along the direction that the radius of pumping influence was small due to a good aquifer connectivity to a pumping position. The precipitation and the oxidation of iron and manganese were caused by an air inflow and a disturbance in groundwater flow due to an abrupt change in pumping rate. The pumping rate and spatial distribution of an aquifer around a pumping well need to be considered as an important factor for the development of in-situ iron and manganese treatment technology.