• Title/Summary/Keyword: Drained-paddy field

Search Result 94, Processing Time 0.031 seconds

Growth and Yield Related Characteristics of Soybeans for the Estimation of Grain Yield in Upland and Drained-Paddy Field (콩 논.밭 재배에서 수랑예측을 위한 생육과 수량 관련 형질의 비교)

  • Cho, Young-Son;Park, Ho-Gi;Kim, Wook-Han;Kim, Sok-Dong;Seo, Jong-Ho;Shin, Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.599-607
    • /
    • 2006
  • The experiments were carried out to develop simulation model for estimating the yield of soybean in upland and paddy field condition. Field experiments were done at National Institute of Crop Science in 2005. The evaluated soybean cultivars were Taekwangkong, Daewonkong, and Hwangkeumkong. Soybean seeds were planted by hill seeding with 3-4 seeds and row and hill spacing were $60{\times}10cm$ in upland and $60{\times}15cm$ in paddy field. Seeds were sown on row (without making ridge) and on the top of ridge in upland and paddy field, respectively. Field parameters were measured yield components ($plants/m^{2}$, pod no./plant, and 100-seed weight, seed yield and growth characteristics (stem length, leaf area at each stage, and dry weight of shoot) and after measuring they were compared the relationships with seed yield and yield components and seed yield and growth characteristics. Seed yield of soybean was affected by cultivars and planting density. Seed yield was higher in upland than paddy field due to the higher planting density in upland field. The upland soybeans generally had lower 100-seed weight than that of paddy field. Seed yield of soybean in a paddy field was greatest in Taekwangkong and followed by Daewonkong and Hwangkeumkong. The harvest index of taekwangkong and Hwanggumkong was higher in upland than paddy field, however, it was higher in paddy field than upland in Daewonkong. Seed yield was greatest in Daewonkong in both experimental fields. The greatest stem length was observed in taekwangkong and Hwanggumkong (R6) in late growth stage in paddy field. Dry weight of shoot and pod, pod number, stem length, and stem diameter were higher grown in paddy field than grown in upland. Crop growth rate (CGR) of cultivars was higher in paddy field after 8 WAS(weeks after sowing) and it was greatest at 13 WAS in Daewonkong among the cultivars. In upland field, CGR was greatest in Taekwangkong and then followed by Daewonkong and Hwanggumkong during 12 and 15 WAS. There was no significant relationships between 100-seed weight and seed yield in both experimental fields. A significant positive relationship was observed between seed number and seed yield. The correlation coefficients between leaf area and shoot dry weight were about 0.8 during the whole growth stage except 5 WAS and 4-5 WAS in paddy field and upland, respectively. This experiment was done just one year and drained paddy field condition was not satisfied drained condition successfully at 7th leaf age of soybean by the heavy rain, so we suggest that the excessive soil water reduced seed yield in paddy field and the weather condition should be considered for utilizing of these results.

Productivity and Nitrogen Response of Paddy Soils (답(畓) 유형별(類型別) 생산력(生產力)과 질소반응(窒素反應))

  • Ryu, In-Soo;Lee, Sung-Tack;Park, Chon-Suh;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.39-48
    • /
    • 1977
  • The results of the determination of the optimum level of nitrogen fertilizer experiment for rice paddy at 21 locations over the country in 1975 year are as follows. 1. The yields of control and N-fertilized plots of ordinary variety (Japonica type) were normal paddy soil>sandy paddy soil>poorly drained paddy soil. Control plots of Tongil variety, (Indica type) however, were sandy poorly drained soil>sandy normal paddy soil=clay poorly drained soil, and N-fertilized plots were normal paddy soil>sandy poorly drained soil>sandy soil>clay poorly drained soil. In other words Tongil variety has higher adaptability to sandy soil under no nitrogen. 2. The yield response to N-fertilizer was higher in normal paddy soil than sandy soil. The productivity per 1kg of nitrogen was 16.6kg in normal paddy soil, 10.5 in sandy soil, and 8.6-11.4 in poorly drained soil for Tongil variety. For ordinary variety, they were 12.6, 6.3, 6.6-9.3kg respectively. 3. Ripening ratio for ordinary variety and ripening ratio and grain weight for Togil variety were higher in sandy soil than normal paddy soil. The main reason why the N-response in mormal paddy soil is higher was appeared to be higher number of effective tillers in normal paddy soil. 4. The optimum rates of N-fertilizer in average were 19.4 in normal paddy soil, 14.6 in sandy soil, and 11.6-13.4kg/10a in poorly drained soil for Tongil variety. For ordinary variety they were 15.9, 10.2, and 8.7-12.7kg/10a respectively. 5. The optimum rate of nitrogen was increased with the increase of productivity in normal paddy soils. In sandy soils and poorly drained soils it was not proved. 6. The optimum rates of N-fertilizer calculated from field experiment were somewhat different from the optimum rates calculated from $SiO_2/OM$ ratio. However, the values calculated both ways showed high correlation. It would be recommendable, therefore, to use $SiO_2/OM$ ratio to calculate the optimum rates of N-fertilizer after revising this equation considering different rice varieties and soil types or water management and climate.

  • PDF

Stuies on the Effect of Compost and Fresh Rice Straw on Paddy yield (수도생육에 있어서 퇴비 생집 시용 효과시험)

  • Oh, Wang Keon;Lee, Sang Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.2
    • /
    • pp.177-186
    • /
    • 1971
  • In order to obtain an idea on the cause of beneficial effect of organic matter, compost and fresh rice straw, in paddy production, a number of previous experimental results were reviewed. The results are as follows: 1. As a soil ameriolater, compost give a beneficial effect, in well drained and somewhat permeable soils but in ill drained and none permeable paddy field the effect is not observed. 2. The effect of fresh rice straw, is expected to be positive with less than compost limitation to the soil conditions. The reason for this benefical effect of fresh rice straw to paddy yield is evidenced to be of depressing effect of early stages of paddy growth which reserves plant nutrients in soil for later use. 3. Several problems in connection with the use of fresh rice straw in rice production is also discussed.

  • PDF

Effect of Ridge Height on Growth Characteristics and Yield of 6 Year Old Panax ginseng in Cultivation of Paddy Soil (논토양에서 두둑높이에 따른 6년생 인삼의 생육 및 수량성)

  • Lee, Sung Woo;Lee, Seung Ho;Jang, In Bok;Lan, Jin Mei;Park, Kyung Hoon;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.5
    • /
    • pp.351-356
    • /
    • 2015
  • Background : Ginseng is mainly grown as a break crop in paddy fields after rice has been cultured for approximately 4 - 5 years, because it reduces the negative effects of continuous rice cropping. However, physiological disorders, such as leaf discoloration, occur in ginseng grown in paddy fields with poor drainage and excessive levels of inorganic components. Methods and Results : This study investigated the effect of ridge height on the growth characteristics and yield of 6 year old Panax ginseng. Ridge height was varied by making 20, 30, and 40 cm high ridges in a pooly drained paddy field. Soil moisture content decreased, while electrical conductivity (EC) as the ridge height increased. The $NO_3$, K, Ca, Mg, and Na levels also rose as ridge height increased, but organic matter and $P_2O_4$ levels did not. The leaf discoloration ratio rose as the ridge height increased, and root yield reached a peak when the ridge height was 30 cm. Conclusion : A ridge height of 30 cm in poorly drained paddy field improved ginseng growth by reducing leaf discoloration and increasing root survival, owing to more suitable soil moisture and EC levels.

Improved Method of Suitability Classification for Sesame (Sesamum indicum L.) Cultivation in Paddy Field Soils

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sanghun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.520-529
    • /
    • 2017
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, Korean government pursuits cultivating upland crops in paddy fields to reduce overproduced rice in Korea. In order to succeed this policy, it is critical to set criteria suitability classification for upland crops cultivating in paddy field soils. The objective of this study was developing guideline of suitability classification for sesame cultivation in paddy field soils. Yields of sesame cultivated in paddy field soils and soil properties were investigated at 40 locations at nationwide scale. Soil properties such as topography, soil texture, soil moisture contents, slope, and drainage level were investigated. The guideline of suitability classification for sesame was determined by multi-regression method. As a result, sesame yields had the greatest correlation with topography, soil moisture content, and slope. Since sesame is sensitive to excessive soil moisture content, paddy fields with well drained, slope of 7-15% and mountain foot or hill were best suit for cultivating sesame. Sesame yields were greater with less soil moisture contents. Based on these results, area of best suitable paddy field land for sesame was 161,400 ha, suitable land was 62,600 ha, possible land was 331,600 ha, and low productive land was 1,075,500 ha. Compared to existing suitability classification, the new guideline of classification recommended smaller area of best or suitable areas to cultivate sesame. This result may suggest that sesame cultivation in paddy field can be very susceptible to soil moisture contents.

Effect of No-Tillage on Soybean Yield and Weed Emergence in Drained Paddy Field Condition in Jeonnam Province (전남지역 논 조건에서 무경운 재배가 콩의 생육, 수량 및 잡초 발생에 미치는 영향)

  • Kim Dong-Kwan;Chon Sang-Uk;Heo Buk-Gu
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.3
    • /
    • pp.89-97
    • /
    • 2006
  • This study was conducted to compare soybean growth and yield and the degree of weed emergence according to no-tillage and conventional tillage system in two different drained paddy fields, loam of Chilgok series and silty clay loam of Deokpyeong series. In both soil conditions, the maturing time of the soybeans by the no-tillage system was two days earlier than that by the conventional tillage system. In the loam of Chilgok series, the stem length of the soybeans in the no-tillage system was 5.7 cm longer than that in the conventional tillage system. The miss-planted rate and diseased plants of black root rot (Calonectria iliacola) in the no-tillage system were 9.2% and 2.8% lower, respectively than those in the conventional tillage system. Also, the nodulation and seed yield in the no-tillage system were 32% and 13% more, respectively, than those in the conventional tillage system. In the silty clay loam of Deokpyeong series, the stem length of the soybeans in the no-tillage system was 4.6cm shorter than in the conventional tillage system. The diseased plants of black root rot (Calonectria iliacola) in the no-tillage system were 4.2% lower than those in the conventional tillage system. Also, no significant difference in the seed yield between the no-tillage and conventional tillage systems was observed. On the other hand, there was a lower occurrence of weed in the no-tillage system than in the conventional tillage system, and the income increased by 19% owing to yield increase and reduced management costs.

  • PDF

Response of Millet and Sorghum to Water Stress in Converted Poorly Drained Paddy Soil

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Oh, In-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.409-416
    • /
    • 2013
  • Millet and sorghum are major dryland cereal crops, however their growth and productivity is limited by soil water stress with varying intensity. The major objective of this study was to evaluate water stress of millet and sorghum yield under drainage classes of poorly drained soil and to test the effect of the installed pipe drainage in poorly drained paddy soil to minimize crop stress. The research was carried out in poorly drained paddy fields located at alluvial slopping area resulting in non-uniform water content distribution by the inflow of ground water from the upper part of the field. Stress Day Index (SDI) was determined from a stress day factor (SD) and a crop susceptibility factor (CS). SD is a degree of measurement by calculating the daily sum of excess water in the profile above 30cm soil depth ($SEW_{30}$). CS depends on a given excess water on crop stage. The results showed that sum of excess water day ($SWD_{30}$) used to represent the moisture stress index was lower on somewhat poorly drained soil compared with poorly drained soil on 117 days. CS values for sorghum were 57% on $3^{rd}$ leaf stage, 44% on $5^{th}$ leaf stage, 37% on panicle initiation, 23% on boot stage, and 16% on soft dough stage. For proso millet CS values were 84% on $3^{rd}$ leaf stage, 70% on $5^{th}$ leaf Stage, 65% on panicle initiation, 53% on boot stage, and 28% on soft dough stage. And for foxtail millet the values were 73% on $3^{rd}$ leaf stage, 61% on $5^{th}$ leaf stage, 50% on panicle initiation, 29% on boot stage, and 15% on soft dough stage. SDI of sorghum and millet was more susceptible to excess soil water during panicle initation stage more poorly drained soil than somewhat poorly drained soil. Grain yield was reduced especially in proso millet and Foxtail millet compared to Sorghum.

Changes in the Soil Physical Properties of Vineyard Converted from Paddy Field (논에서 전환한 포도원의 토양물리적 특성변화)

  • Yun, Eul-Soo;Jung, Ki-Youl;Park, Ki-Do;Ko, Jee-Yeon;Lee, Jae-Saeng;Park, Sung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.145-151
    • /
    • 2009
  • This study was conducted to develop rational soil management and enhance the productivity of lands converted from paddy soils. Specifically, the changes in the soil physical properties brought about by the change in land usage from paddy soil were evaluated. This was carried out from 1999 to 2001 at 50 site in large-scale converted paddy fields of Kimcheon, Youngcheon, Gyeongsan and Milyang in the Youngnam region, categorized according to soil texture and drainage class. The ridge height of converted paddy soils was higher in coarse-textured and poorly-drained soils than in fine-textured and well-drained soils. The gray color of the surface soil was of lesser degree in converted soils than paddy soils and more notable in welldrained soils. The porosity ratio and the formation of aggregate structure were higher, and the appearance of soil mottling was deeper in converted paddy fields than in paddy soils. The glaying layer "g" of surface soil degraded with time. The porosity and amount of water stable aggregate was found to increase with time after conversion. The penetration resistance of the converted paddy soil was lower and deeper with time after conversion. The soil aeration of the converted paddy soil was lower in sandy loam than in loamy soil. Furthermore, soil aeration was influenced by ridge height and drainage class in poorly-drained soils.

Load Characteristics of Rotary Operation Using a Cage Wheel in Wet Paddy Fields (케이지 휠을 이용한 습답 로터리 작업의 부하 특성)

  • 오영근;김경욱;박금숙
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.229-236
    • /
    • 2001
  • The torque loads acting on the input shaft of the transmission and final driving shaft of the tractor having a cage wheel attached to the driving tries as a traction aid were measured during the rotavating operations in a poorly drained paddy field. Using the measured load data load spectra were constructed. Effects of the design parameters of the cage wheel on the load characteristics were also analyzed. The torque load exerted on the input shaft decreased as the diameter of the cage wheel increased and increased as the rotavator speed increased. The torque load exerted on the final driving shaft increased as the working speed of the tractor increased and decreased as the rotavator speed increased. The torque load on the final driving shaft with the cage wheel were greater than those without the cage wheel.

  • PDF