Growth and Yield Related Characteristics of Soybeans for the Estimation of Grain Yield in Upland and Drained-Paddy Field

콩 논.밭 재배에서 수랑예측을 위한 생육과 수량 관련 형질의 비교

  • Published : 2006.12.31

Abstract

The experiments were carried out to develop simulation model for estimating the yield of soybean in upland and paddy field condition. Field experiments were done at National Institute of Crop Science in 2005. The evaluated soybean cultivars were Taekwangkong, Daewonkong, and Hwangkeumkong. Soybean seeds were planted by hill seeding with 3-4 seeds and row and hill spacing were $60{\times}10cm$ in upland and $60{\times}15cm$ in paddy field. Seeds were sown on row (without making ridge) and on the top of ridge in upland and paddy field, respectively. Field parameters were measured yield components ($plants/m^{2}$, pod no./plant, and 100-seed weight, seed yield and growth characteristics (stem length, leaf area at each stage, and dry weight of shoot) and after measuring they were compared the relationships with seed yield and yield components and seed yield and growth characteristics. Seed yield of soybean was affected by cultivars and planting density. Seed yield was higher in upland than paddy field due to the higher planting density in upland field. The upland soybeans generally had lower 100-seed weight than that of paddy field. Seed yield of soybean in a paddy field was greatest in Taekwangkong and followed by Daewonkong and Hwangkeumkong. The harvest index of taekwangkong and Hwanggumkong was higher in upland than paddy field, however, it was higher in paddy field than upland in Daewonkong. Seed yield was greatest in Daewonkong in both experimental fields. The greatest stem length was observed in taekwangkong and Hwanggumkong (R6) in late growth stage in paddy field. Dry weight of shoot and pod, pod number, stem length, and stem diameter were higher grown in paddy field than grown in upland. Crop growth rate (CGR) of cultivars was higher in paddy field after 8 WAS(weeks after sowing) and it was greatest at 13 WAS in Daewonkong among the cultivars. In upland field, CGR was greatest in Taekwangkong and then followed by Daewonkong and Hwanggumkong during 12 and 15 WAS. There was no significant relationships between 100-seed weight and seed yield in both experimental fields. A significant positive relationship was observed between seed number and seed yield. The correlation coefficients between leaf area and shoot dry weight were about 0.8 during the whole growth stage except 5 WAS and 4-5 WAS in paddy field and upland, respectively. This experiment was done just one year and drained paddy field condition was not satisfied drained condition successfully at 7th leaf age of soybean by the heavy rain, so we suggest that the excessive soil water reduced seed yield in paddy field and the weather condition should be considered for utilizing of these results.

논과 밭에서 콩 생산성과 생육 형질들의 측정치의 관계를 알아보기 위해 시험을 수행한 결과는 다음과 같다. 1. 단위면적당 콩 수량은 논보다 밭에서 높은 경향 이였으나 개체당종실수는 밭에서 100립중은 논에서 높은 경향이였다. 논에서 태광콩의 수량이 가장 높았고 대원콩과 황금콩 순으로 높은 경향을 나타냈다. 밭에서는 황금콩에서 가장 높은 수량을 기록했고 대원콩과 태광콩 순으로 높았다. 2. 밭에서 수확지수는 태광콩과 황금콩이 논보다 높았고 대원콩은 논에서 밭보다 유의성은 없었으나 높은 경향이었고, 전체적으로 대원콩이 논 밭 모두에서 가장 높았다. 3. 100립중은 태광콩은 유의성이 없었으나 대원콩은 밭에서 황금콩은 논에서 높았다. 4. 엽의 녹색도는 논과 밭 재배조건 모두 파종 후 4주차부터 감소되었으나,논의 경우는 6주차까지 감소하였고, 그 이후 증가하였으며 밭의 경우는 5주차에 가장 낮은 값을 기록한 후 6주차부터는 상승하였다. 5. 지상부 건물중, 협 건물중, 협수, 경장, 경직경은 태광콩과 황금콩이 밭보다 논에서 높았으며 대원콩은 밭에서 높은 경향이었다. 6. 협 생체중은 논 밭 모두 파종 후 9주차부터 점차 상승하였으나 1 cm 이하의 협수는 논에서는 12주차, 밭에서는 11주차 이후에는 세 품종 모두 증가되지 않았다. 7. 작물생장율(CGR)은 논재배콩이 밭보다 파종후 8주차 이후부터 높은 경향이었고, 13주차에서는 대원콩이 타 품종들보다 월등히 높았다. 밭에서는 파종후 12주차부터 15주차까지 태광콩, 대원콩, 황금콩 순으로 높았다. 8. 개체당종실수와 수량간의 상관은 논 밭 모두 고도의 정상관을 보였다. 9. 엽면적과 지상부 건물중은 논에서는 파종후 5주차를 제외한 4-15주차 사이에 0.8내외의 고도의 정의 상관을 나타냈으나, 밭에서는 4, 5주차에서 상관이 낮았고 나머지 기간에는 논과 같은 양상을 보였다. 10. 엽면적과 지상부 건물중과의 상관은 논 밭 모두 고도의 정의 상관을 보였다.

Keywords

References

  1. Acock, B. and A. Trent. 1991. The soybean crop simulator, GLYCIM : documentation for the modular version 91. Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, Idaho. p. 242
  2. Cho, J. W., J. J. Lee, Y. J Oh, J. D. So, J. Y. Won, and C. H. Kim. 2006. Soybean growth and yield as affected by spacing of drainage furrows in paddy field. Korean J. Crop Science. 51 (1) : 26-31
  3. Choi, K. J., H. S. Lee, and T. W. Kwon. 1995. Physiological response of soybean under excessive soil water stress during vegetative growth period. Korean J. of Crop Science. 40(5) ; 594-599
  4. Haskett, J., Pachepsky Ya. A., Acock, B. 1995. Estimation of Soybean yields at County and State Level Using GLYCIM : a Case Study for Iowa. Agronomy Journal. 87 : 926-931 https://doi.org/10.2134/agronj1995.00021962008700050025x
  5. Haskett, J., Ya. pachepsky, and B. Acock. 1997. Increase of $CO_2$ and Climate Change effects on Iowa Soybean Yield, Simulated Using GLYCIM. Agron. J. 89 : 165-174
  6. ICASA, 2006. http://www.icasa.net/dssat/ibsnat.html)
  7. Reddy, V. R., B. Acock, and F. D. Whisler. 1994. Crop management and input optimization using the soybean model GLYCIM. In V. M. Salokhe and Gajendra Singh (ed.) Proc. Intl. Agrl. Eng. Conf., Bangok, Thailand, 6-9 December 1994, pp. 453-460
  8. Reddy, V. R., B. Acock, and F. D. Whisler. 1995. Crop management and input optimization with GLYCIM : differing cultivars. Computers and Electronics in Agriculture 13 : 37-50 https://doi.org/10.1016/0168-1699(95)00013-T
  9. Ritchie, J. T, E. C. Alocijia, and G. Uehara. 1986. IBSNAT/ CERES Rice Model. Agrotechnology Transfer. 3 : 1-5
  10. Son, B. Y, D. H. Kim, E. S. Kim, S. K. Kim, D. J. Kang, W. K. Shin, and H. S. Lee. 1997. Effect of planting dates and drainage methods on growth and yield of sprought soybeans in converted upland from paddy field. Korean J. Crop Science. 42 : 323-332
  11. Timlin, D. J, Ya. Pachepsky, B. Acock, and F. Whisler. 1996. Indirect Estimation of Soil Hydrolic Properties to predict Soybean Yield using GLYCIM. Agricultural Systems, 52 : 33 1-353 https://doi.org/10.1016/0308-521X(96)00001-7
  12. Tsuji, G. Y., G. Uehara, and S. Balas (ed.). 1994. DSSAT version 3. (3 vol.) Univ. of Hawaii. Honolulu