• Title/Summary/Keyword: Drainage pipes

Search Result 66, Processing Time 0.027 seconds

A Study on the Structure-borne Noise and Noise Reduction of Drainage Pipes (배수관의 구조소음과 소음저감에 관한 연구)

  • Ryu, B.J.;Lee, G.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.194-202
    • /
    • 2009
  • The paper deals with the countermeasure against structure-borne noise source and noise reduction of drainage pipes. Recently, the problem the problem of the toilet drain noise of an apartment house has been become the center of public interest and a target of public grievance. Generally, the drain noise of a toilet in the apartment house has a pink noise characteristics below 2 kHz level, and therefore, the structure-borne noise has a great effect on the entire drain noise. In order to measure the transmission loss for various kinds of pipes such as PVC pipes, cast-iron pipes and newly developed AS pipes, experimental setup containing speakers as a sound source was designed and manufactured. The second-stories measurement room with a small size anechoic chamber was constructed and the noise level for different kinds of drainage pipes was measured by the sound level meter. Through the experimental research in the study, noise reduction capacity for various kinds of drainage pipes and countermeasures against structure-borne noise source are demonstrated.

  • PDF

Analyses of subsurface drainage effects of farmland with respect to pipe and envelop material (관재료 및 피복재료별 농경지 암거배수 효과 분석)

  • 정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.53-61
    • /
    • 1995
  • Analyses of subsurface drainage effects of farmland with respect to pipe and envelop material are made by the laboratory experiments using soil box to give basic information for the subsurface drainage system planning and design. Three different diameter PVC perforated pipes and a mesh pipe are used with envelop materials such as sand, rice bran, and crushed stone. Steady state subsurface drainage flow rate increased as envelop material changed from sand to rice bran and crushed stone. This indicates that as the hydraulic conductivity of the envelop material increases, the drainage flow rate increases. On the other hand, for a given envelop material, the mesh pipe which has the largest openning area shows the largest flow rate while small diameter PVC pipes show small flow rates. This tells that as the openning area and pipe diameter increase, the flow rate increases, too. Therefore, selection of pipe and envelop material should be made in accordance with the design drainage flow rate. Unsteady state subsurface drainage flow rate with respect to time differs for different envelop material. In case the sand was used as an envelop material, the small diameter PVC pipes show larger flow rates than the large diameter PVC pipe and mesh pipe. When the rice bran was used, the mesh pipe shows the largest flow rate, while small diameter pipes show smaller flow rates. In case the crushed stone was used as an envelop material, the large diameter PVC pipe and mesh pipe show larger flow rates, while small diameter pipes show a little bit smaller flow rates. However, the variation of flow rates among different pipes is the smallest when the crushed stone is used. The flow rate curve with respect to the pipe changes little for the crushed stone envelop which has a large hydraulic conductivity, while that changes much for the sand and rice bran envelops. However, it is difficult to draw a consistent relationship between the drainage flow rate and pipe for all the envelop materials. Since the subsurface drainage experiments are made only under the restricted laboratory condition in this study, further study including field experiment is required.

  • PDF

Field Application of Permeable Polymer Concrete Pipe for Drainage (집.배수용 투수성 폴리머 콘크리트 관의 농업 수리시설물의 현장적용)

  • 민정기;연규석;성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.136-143
    • /
    • 2003
  • This study is performed to evaluate performance of the developed pipe when using for underground drainage in fm land, the efficiency of the pipe is examined such as quantity of drainage, water temperature and other field performance in all weather condition. Results of this study, the higher permeability through wall of the pipe is achieved by making various size pores using open-graded aggregate. And in all weather conditions, permeable polymer concrete pipe perform much better than conventional perforated pipes. During rice farming period, quantity of drainage the permeable polymer concrete pipe is 1.25 time greater than conventional perforated pipes. Therefore, use of the permeable polymer concrete pipe is greater advantages when considering collecting and draining capacity compared with conventional perforated pipes.

Growth and Tield Performance of Selected Forage Crops Cultivated on Imperfectly Drained Paddy Field under Subsurface Drainage by PVC Pipes (배수 약간 불량지 논에서 PVC 파이프 암거배수에 의한 사료작물 재배)

  • 김정갑;박근제;김건엽;한민수
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.3
    • /
    • pp.219-224
    • /
    • 1996
  • Silage comkv, suwwn 19). sorghum $\times$ sudangrass(p. 988) and winter ryeNaton) were cultivated on imperfectly drained paddy field under two different draining methods, subsurface darinage by PVC pipes and open ditsched surface drainage. The crops were harvested at the stage of hard dough for corn and soft dough for wrghum and rye. The soil physical properties. soil colors. soil structure and soil wetness were improved in the subsurface drainage. Gravitational water table occured depth in 110 cm(dry season)~75cm(rain season). In soil profile description, yellowish brown with yellowish red mottles and well developed granular structure were found in the surface A horizon. The portion of solid phase in subsoils(B horizon) was reduced from 48.6%(undrained) to 43.7 %. A blocky structure with dark gray to gray were described in the open ditsched surface drainage. Severe wet depression of the crops was observed due to it's higher moisture contents, where the gravitational water occured depth in 25~37cm during the rainy season. The chemical properties of paddy soils were less affected by drainage methods. The concentration of available phosphate. organic matter and exchangeable K, Ca and Mg were decreased in the subsurface drained soils. The annual dry matter yields of com-rye cropping were 17.8 ton in the undrained, 21.6 ton in the open ditsch drainage and 35.9 ton/ha in the subsurface drainage.

  • PDF

A Study on the Noise and Condensation Characteristics of Complex Structure Drainage Pipe Materials (복합 구조형 배수 배관재의 소음 및 결로 특성에 관한 연구)

  • Kim, Jae-Dol
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.72-77
    • /
    • 2016
  • The present study investigates noise and condensation characteristics of polyvinyl chloride (PVC), which is widely used for drainage piping materials, complex double structure by comparing to those of PVC single structure piping materials. In addition, effects of insulation on drainage noise has been measured experimentally. As the results of the experiments, noise reduction effect of PVC complex double structure is superior to that of PVC single structure in terms of elbow and vertical piping materials which are employed for drainage pipes of toilet bowls and bathtub. The insulation barely have effect on the noise reduction in case of the PVC single structure since there is almost no changes in noise occurrence even though the insulation is applied on both elbow and vertical piping materials. Temperature differences between inside and outside of the pipes have been measures for the PVC single and complex double structures as well. In consequence, outside temperature of the PVC complex double structure is higher than that of the PVC single structure. The condensation occurrence time of the PVC complex double structure shows a distinct difference from that of the PVC single structure, thus, the PVC complex double structure has outstanding effect on preventing the condensation.

Laboratory Test of Molecular Vibration for Preventing Drainage Pipe Blockage in Deteriorated Tunnel (분자진동을 이용한 터널 배수공 막힘 억제의 실내시험 연구)

  • Yoon, Se-Hwan;Park, Eun-Hyung;Lee, Jong-Hwi;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.69-77
    • /
    • 2012
  • Clogging of drainage pipes by scale is an important problem in civil engineering works. Although scale deposits can be removed by acid treatment or water jetting, these treatments are costly and have many disadvantages. In this study, scale samples from tunnel drainage pipes were analyzed using SEM-EDS and XRD. The main ingredient in scale was $CaCO_3$ of the calcite crystal form. Drainage experiments and recirculation type experiments were conducted to control and remove scale deposits, which were determined through visual and weight measuring analysis. As a result, Quantum Stick has the effect of limiting formation of scale.

A Study on Use and improvement of Construction type infiltration gallery (조립식 집수암거의 개량과 이용에 관한 연구)

  • 함준호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2593-2602
    • /
    • 1972
  • Plastic pipes Wrapped with synthetic filter are recently used for drainage or Collecting of Underground water. But it's use is possible only for small size of diameter less than 300mm, because large size plastic pipes are not readily availabe. For large diameter infiltration gallery, porous concrete pipes are now used, but it's heavy weight brings difficulties in making, moving and setting of the pipes. With it's conventional method of filter setting, fine sands are brought into the pipes to make trouble to lifting pumps and channels Therefore, initial construction cost and maintenance cost become high. To solve-this problem, new method is developed and tested. Small PVC pipes(diameter 14mm) are assembled at the site of construction to newly devised I beam type circls. The size of circular inpiltration gallery is optionally determined by I beam type circle which support small PVC pipes and is made of PVC amterial. This gallery are wrappd with syntheitc filter to prevent sand instruction. In this test, the diameter of 300, 400, 500mm were used. I beam type circles were made with PVC plated with thickness. t=6, 9, 12mm. Water quantity collected through the PVC circulor gallery are measured and the strengths of the gallery. 1. Allowable setting depth of gallery pipe below graund for the case of t=6mm, D=500mm is 2.72m. 2. Collected water quantity depends on soil texture, depth of water grandient of water surface, filter material angle of setting etc. 3. About 126% of water quantity collected from the one gallery pipe measured in two gallery pipes of two parallel installation.

  • PDF

Analysis of runoff speed depending on the structure of stormwater pipe networks (우수관망 구조에 따른 유출 속도 분석)

  • Lee, Jinwoo;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • Rainfall falling in the impervious area of the cities flows over the surface and into the stormwater pipe networks to be discharged from the catchment. Therefore, it is very important to determine the size of stormwater pipes based on the peak discharge to mitigate urban flood. Climate change causes the severe rainfall in the small area, then the peak rainfall can not be discharged due to the capacity of the stormwater pipes and causes the urban flood for the short time periods. To mitigate these type of flood, the large stormwater pipes have to be constructed. However, the economic factor is also very important to design the stormwater pipe networks. In this study, 4 urban catchments were selected from the frequently flooded cities. Rainfall data from Seoul and Busan weather stations were applied to calculate runoff from the catchments using SWMM model. The characteristics of the peak runoff were analyzed using linear regression model and the 95% confidence interval and the coefficient of variation was calculated. The drainage density was calculated and the runoff characteristics were analyzed. As a result, the drainage density were depended on the structure of stormwater pipe network whether the structures are dendritic or looped. As the drainage density become higher, the runoff could be predicted more accurately. it is because the possibility of flooding caused by the capacity of stormwater pipes is decreased when the drainage density is high. It would be very efficient if the structure of stormwater pipe network is considered when the network is designed.

Analysis of Land Subsidence Risk Factors Considering Hydrological Properties, Geomorphological Parameters, and Population Distribution (수문 및 지형특성과 인구분포를 고려한 지반침하 발생 평가인자 분석)

  • Ye-Yeong Lee;Dahae Lee;Eun-Ji Bae;Chung-Mo Lee;Hanna Choi
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.45-57
    • /
    • 2023
  • To assess land subsidence estimation and preparedness in the Geum River basin, this study applied GIS techniques and identified six key areas. The Geum River basin has experienced an increase in heavy rainfall since late 2010, and four study areas have shown an increase in groundwater levels. Land subsidence primarily occurred from June to September, with higher rainfall years in 2020 and 2023. Approximately 83.6% of land subsidence in Chungcheongbuk-do province occurred in Cheongju-si, mainly attributed to aging sewage pipes. The regions experiencing population growth have likely led to the construction of underground infrastructures and sewer pipes. Thus, it is considered that various factors, including sewage pipe leaks, precipitation, slope gradient, low drainage density, and groundwater level fluctuations, have contributed to land subsidence. Improving land subsidence estimation involves incorporating additional natural factors and human activities.

The Specific Resistance Analysis and Measurement of the Ground at the site of the Anode Laying for the Electrolytic Protection for the Electrical Anticorrosive (전기방식용 양극 매설부지 대지 비저항 측정 및 분석)

  • Hong, Sung-Taek;Shin, Gang-Wook;Lee, Dong-Keun;Lee, Eun-Chun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.115-117
    • /
    • 2005
  • The electrolytic protection is classified according to the current supplied. And there are the Sacrificial Anode System, the Impressed Current System, the Polarized Drainage System, the Forced Drainage System. This study is intended to design and analyze the electrolytic protection at water transmission pipes which is occurred the corrosion, and to show the methods protecting corrosions at water transmission pipes.

  • PDF