• Title/Summary/Keyword: Drainage Capacity

Search Result 310, Processing Time 0.019 seconds

Studies on Wet Paddy Field Underdrainage Improvement in the Gum-Ho Area (I) (금호지구 저습답의 암거배수효과에 관한 연구(I))

  • 김조웅;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.82-95
    • /
    • 1980
  • This paper complies the results of the studies so far made on the subsoil improvement of subsurface drainage systems for wet paddy fields (those were located in the Gum-Ho area in Kyung Buk province) which had poor permeability and a high water table. In general, a drainage problem is an excess of water on the ground surface which can effect the productivity and bearing capacity of the soil. With drain pipe systems, (According to their depths and spacing) it may be possible to correct that problem. The experimentation consisted of three test plots, two of which included drain pipe systems with varing depths and width spacing of the pipes. The third plot (C) was an ordinary plot being exempt of a drain pipe system. In detail, the depth of plot A was 80 cm, and the width spacings began at 2. Om and increased by 2. Om up to 10. 0m. The depth of plot B was 60cm and the width spacing was the same as plot A. These tests were performed to research specific details; such as crop yeild, bearing capacity of the soil, the amount of underdrainage, surface cracks, root distribution, the water table level, the consumptive water depth and the soil moisture content. The test period lasted three years, from 1977 thru 1979. The results obtained were as follows: 1. During the test period, the weather conditions for the area tested were in accordance with the annual average for that area. Furthermore the precipitation factor during the spring cultivation season, the intermediate drainage period and the harvest drainage period was of optimum conditions for controling surface cracks, because of less precipitation than evaporation. 2. The difference in the level of the ground water table in plots A and B was hardly noticable, but the difference in the test plots and the ord. plot was greatly noticable. The test plots (A, B) were 30 to 40cm lower than the ordinary plot. On the whole, the ground water table of the ord. plot always stayed at a level of 15-20cm beneath the surface of the soil, the ground water table of the test plot A showed The difference in the depth of the pipe lower than the test plot B, while the test plots showed a remarkable descending effect. 3. The soil temperature in plot A was slightly core than in plot B with a difference of 0. 47$^{\circ}$C, but plot A was 1. 6$^{\circ}$C higher than the ord. plot during the flooding period, but after drainage the temperature difference climed to 2. 0$^{\circ}$C. 4. During the 3rd test year, the values of the cracks were recorded with the values of 59cm in plot A, 42cm in plot B and 15cm in the ordinary plot. Plots A and B had increased 2.5 times the value of the first year while the ordinary plot had remained the same. 5. The root weight of the rice was measured at a value of 77.2 gr. for plot A, 73.5 gr. for plot B and 65.3 gr. for the ord. plot. Therefore, the root growths in plots A and B were much more energetic than in the ord. plot. 6. The consumptive water depth measured during the 3rd year resulted in the values of 26. 0mm per day for plot A, and 24.9 mm per day for plot B, respectively. Therefore, both plot A and plot B maintained the optimum consumptive water depths, but the ordinary plot only obtained the value of 12.3 mm per day, which clearly showed less than the optimum consumptive water depth which is 20 to 30 mm/day. 7. The soil moisture content is in direct relationship to the ground water level. During drainage, test plot A decreased in its ground water level much more rapidly than the other two plots. Therefore, plot A had a much less soil moisture content. But this decreased water level could be directly effected by the weather conditions. 8. The relationship between the bearing capacity and the soil moisture content were directly inversely proportional. It can be assumed that the occurence of soil creaks is limited by the soil moisture content. Therefore, the greater the progress of the surface creaks resulted in a greater bearing capacity. So, tast plot A with a greater amount of surface cracks than the other test plots resulted in a greater bearing capacity. But, the bearing capacity at the harvest season could be effected by the drainage during the intermediate drainage period and by the weather conditions. 9. Comparing the production of the test plots to the ord. plot; there was an increased value of 840kg for plot A, 755kg for plot B and 695kg for the ord. plot in the rough rice. Therefore, plot A had an increase of 20% over the ordinary plot. The possibility of producing double crops was investigated. The effects on barley production in the test plots showed a value of 367kg per 10 acres, which substantiated the possibility of double crops because that value showed an increased value over the average yearly yield for those uplands. 10. So as a result, it can be recommended that by including a drain pipe system with the optimum conditions of an (80cm centimeter) depth and a (l0m) spacing will have a definite positive effect on the over all production capacity and quality of wetpaddy fields.

  • PDF

The Study on the Removal Process of Heavy Metals from Mine Drainage Using Coal Bottom Ash (석탄 바닥회를 이용한 광산배수의 중금속 제거 공정 연구)

  • Kim, Hye Rim;Lee, Jung Mi;Han, In Kyu
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.41-47
    • /
    • 2020
  • This study was carried out to utilize the coal bottom ash generated in a circulating fluidized bed combustion boiler as a treatment agent for heavy metal ions, and experiments were conducted to remove heavy metal ions from the acid mine drainage. The batch experiments were conducted to investigate the influence of dosage of ash, initial concentration of solution on the removal capacity of heavy metal ions (Cu, Cd, Cr, Pb). The results of the experiment showed that the total removal capacity of heavy metals was 30.8 mg/L and 46.4 mg/g, respectively, under the condition that the concentration of coal ash was added as 15 g/L of heavy materials and 10 g/L of light materials. After that, a long-term column experiment was performed to determine the maximum removal capacity of heavy metal ions (Cu, Cd, Cr, Pb, As), and the removal capacity for each metal component was investigated. After approximately 60 days of operation, the maximum removal capacity of heavy metals was 23.6 mg/g at pH 9.25.

Effects of Artificial Substrate Type, Soil Depth, and Drainage Type on the Growth of Sedum sarmentosum Grown in a Shallow Green Rooftop System (저토심 옥상녹화 시스템에서 돌나물(Sedum sarmentosum)의 생육에 대한 인공배지 종류, 토심, 그리고 배수 형태의 효과)

  • 허근영;김인혜;강호철
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.2
    • /
    • pp.102-112
    • /
    • 2003
  • This study was carried out to research and develop a shallow green rooftop system which would require low maintenance and therefore could be used for existing rooftops. To achieve these goals, the conceptual model was induced by past studies and the experimental systems were deduced from the conceptual model. On the growth of Sedum sarmentosum grown in these rooftop systems, the effects of artificial substrate type, soil depth, and drainage type were investigated from 3 April to 11 October 2002. Artificial substrates were an alone type and a blending type. The alone type was an artificial substrate formulated by blending crushed porous glass with bark(v/v, 6:4). The blending type was formulated by blending the alone type with loam(v/v, 1:1). Soil depths were 5cm, loom, and 15cm. Drainage types were a reservoir-drainage type and a drainage type. The reservoir-drainage type could keep water and drain excessive water at the same time. The drainage type could drain excessive water but could not keep water. Covering area, total fresh and dry weight, visual quality, and water content per 1g dry matter were measured. All the variables were analyzed by correlation analysis and factor analysis. The results of the study are summarized as follows. The growth increment was higher in the blending type than in the alone type, the highest in loom soil depth and higher in the reservoir-drainage type than in the drainage type. The growth quality was higher in the blending type than in the alone type, the highest in l0cm soil depth, and higher in the drainage type than in the reservoir-drainage type. In consideration of the permissible load on the existing rooftops and the effects of the treatments on the growth increment and quality, the system should adopt the blending type in artificial substrate types, 5~10cm in soil depths, and the drainage type in drainage types. This system will be well-suited to the growth of Sedum sarmentosum, and when the artificial substrate was in field capacity, the weight will be 75~115kg/$m^2$.

The Soil and Water Pollution caused by the Weathering of Pyrophyllite Deposits: Upstream Part of Hoidong Water Reservoir in Pusan (납석광산에서 발생하는 토양 및 수질오염 실태 : 부산광역시 회동수원지 상류 지역)

  • 박맹언;김근수
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 1998
  • Enoronmental problems caused by certain geologic conditions Include pollution of soil by heavy metal, acidization of souls , acid mine drainage, Pound-water pollution, and natural radioactivity, as well as zoo-logical hazards such as landslide and subsidence. The acrid mine drainage contains large amount of heavy metals nO, therefore. cause serious pollution onto the nearby drainage systems and soils. In spite of this prospective environmental danger, few studies have been done on the acid mine drainage derived from non-metallic ore deposits such as pyrophyllitefNapseok) deposits. The sudo-bearing pyrophyllite ores, alteration zones, and mine talllngs of pyrophylllte deposits produce acrid mine drainage by the okidation of weathering. Compared to the fresh host rocks, the ores and altered rocks of pyrophyllite deposits produce acidic solution which contain higher amount of heavy metals because of OeP lower buffering capacity to acrid solution. The pus of urine water and nearby stream water of pyrophyllite deposits are 2.1~3.7, which are strong- ly acidic and much lower than that (6.2~7.2) of upstream water and than that (6.8~7.6) of the stream water derived from the non-mineralized area. This study reveals that this acrid mine drainage can affect the downstream area which is 8km far from the pyrophyllite deposits, even though the drain Is diluted with abundant non-contaminated river water This suggmists that not only acid mine drainage but also the sulfide-bearing sediments originated from the pyrophyllite deposits move downstream and form acidic water through continuous oxidation reaction. The heavy metals such as Pb, Zn, Cu, Cd, Nl, Mn and Fe are enriched In the mine water of low pH, and their contents decrease as the pH of mine water Increases because of the Influx of fresh stream wainer. SoUs of the Pyrophyulte deposits are characterized by high contents of heavy metals. The stream sediments containing the yellowish brown precipitates formed by neutralization of acid mine drainage occur in all parts of the stream derived from the pyrophyllite deposits, and the sediments also contain high amounts of heavy metals. In summary, the acid mine drainage of the pyrophyllite deposits is located in the upstream part of Hoidong water reservoir in Pusan contains large amounts of heavy metals and flows into the Holdong water reservoir without any purification process. To protect the water of Holdong reservoir, the acid mine drainage should be treated with a proper purification process.

  • PDF

A Study on Discharge Capacity of Vertical Drain Considering with In-situ Soil Condition (원지반조건을 고려한 연직배수재의 통수능에 관한 연구)

  • Park, Min-Chul;Kim, Eun-Chul;Lee, Song
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • Discharge capacity of PBD is sensitive in proportion to thickness and ground condition, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity gets larger according to ground condition, construction condition and soil properties. But cause and analysis of those problems like reduced discharge of capacity and delayed dissipation of pore water pressure for discharge capacity is lack. Thus, in this text, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with in-situ ground condition. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. After in-situ ground and reclamation of ground are dredged, load following the loading step of 30, 70 and 120kPa using a pressure device. Result of the test, The discharge capacity was SM>ML>CL>CL(dredged soil) in situ condition and more fine-grained content, the amount of discharge was greater.

Performance evaluation of a subsurface drainage culvert system in converted paddy fields

  • Do, Jong Won;Park, Jongseok;Kim, Hyuntai;Lee, Kwangya;Shin, Hyungjin
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.263-273
    • /
    • 2020
  • With the change of the agricultural environment (increased rice production, decreased rice consumption, and rice production policies), converting paddy fields into upland fields is an increasing trend. In terms of conversion into upland fields, subsurface drainage is one of the most important factors for good field crop growth. This study evaluates the performance of a subsurface drainage culvert system in paddy fields and reclaimed lands. The obtained results are briefly summarized as follows: 1) After a comparative evaluation of several subsurface drainage culvert systems, including excavated subsurface drainage and non-excavated subsurface drainage types, type 3 (non-excavated, perforated drain pipe 50 mm, filter mat B50 cm, subsoiling 70 cm and culvert spacing 5 m) shows relatively high values among four types in terms of effectiveness (subsurface discharge capability) and economic efficiency (construction cost). 2) Type 3 has proven that it is suitable for design standards of discharge capacity through field tests performed in paddy fields (three sites: Gong-geom, Gae-san, Juk-san) and reclaimed lands (two sites: Gum-ho, Mi-am). 3) In the experiment of Sesamum indicum growth according to the existence of a drainage system, Sesamum indicum growth with a subsurface drainage culvert system had good value in terms of plant shoot and root length, shoot fresh and dry weight, and root fresh and dry weight).

A Study on the Soft Ground Improvement in Deep Depth by Application of PBD Method Using Model Test (실내모형실험을 통한 PBD공법이 적용된 대심도 연약지반 개량에 관한 연구)

  • Byun, Yoseph;Ahn, Byungje;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.69-77
    • /
    • 2009
  • The shortage of bearing capacity and settlement, shear deformation may occur when constructing a structure such as harbor, airport and bridge on soft ground such as marine clay, silty clay, sandy soil because it is very soft. The various ground improvement methods were applied to obtain preceding settlement of soft ground and strength increase. The vertical drain method has been used to reduce the required time for consolidation of the soft ground. Especially, the PBD (Plastic Board Drain) has been widely used among in the vertical drain method. In this study, a behavior of characteristic was evaluated by operating a compound drainage capacity test about the PBD (Plastic Board Drain) method applied in soft clay in deep depth. As a result, the settlement gradually occurred with increase of surface load. The consolidation settlement was processed with dissipation of pore pressure after surface load of $500kN/m^2$. Accordingly, it was found that change of settlement through load steps was resulted from dissipation of pore pressure. It was also found that the drainage capacity of vertical drains was considerably reduced with pressure increase and time elapse.

  • PDF

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.