• Title/Summary/Keyword: Drain spacing ratio

Search Result 9, Processing Time 0.017 seconds

Consolidation Behavior of Soft Ground by Prefabricated Vertical Drains (연직드레인 공법에 의한 연약지반의 압밀거동)

  • 이달원;강예묵
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.376-381
    • /
    • 1998
  • The large scaled field test by prefabricated vertical drains was performed to evaluate the superiority of vertical discharge capacity for drain materials through compare and analyze the time-settlement behavior with drain spacing and the compression index and consolidation coefficient obtained by laboratory experiments and field monitoring system 1. The relation of measurement settlement( $S_{m}$) versus design settlement( $S_{t}$) and measurement consolidation ratio( $U_{m}$) versus design consolidation ratio( $U_{t}$) were shown $S_{m}$=(1.0~l.1) $S_{t}$, $U_{m}$=(1.13~l.17) $U_{t}$, at 1.0m drain spacing and $S_{m}$=(0.7~0.8) $S_{t}$, $U_{m}$=(0.92~0.99) $U_{t}$ at 1.5m drain spacing, respectively. 2. The relation of field compression index( $C_{cfield}$) and virgin compression index( $V_{cclab}$) was shown $C_{cfield}$=(1.0~1.2) $V_{cclab}$, But it was nearly same value when considered the error with determination method of virgin compression index and prediction method of total settlement. 3. field consolidation coefficient was larger than laboratory consolidation coefficient, and the consolidation coefficient ratio( $C_{h}$/ $C_{v}$) were $C_{h}$=(2.4 ~ 3.0) $C_{v}$. $C_{h}$=(3.5 ~ 4.3) $C_{v}$ at 1.0m and 1.5m drain spacing and increased with increasing of drain spacingngasing of drain spacingng spacingng

  • PDF

Experimental Study on Consolidation Behavior of the Smeared Soil for Various Spacing Ratios of Vertical Drains (다양한 배수재 간격비에 따른 스미어 발생 지반의 압밀거동에 대한 실험적 연구)

  • Yune, Chan-Young;Kang, Hee-Woong;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.77-87
    • /
    • 2011
  • To investigate the effect of drainage spacing and smear on the rate of consolidation and the efficiency of vertical drain method, a series of consolidation tests with a large consolidation chamber and special equipment for inserting mandrels were conducted. As the smeared region increases, total settlement in over-consolidated clay increases whereas apparent change in settlement does not appear in normally consolidated clay. Vertical drain generally accelerates the rate of consolidation, while it could also deteriorate the efficiency of vertical drain method even for the decreasing drainage length and spacing ratio.

Consolidation Behavior of Soft Ground by Prefabricated Vertical Drains (페이퍼드레인 공법에 의한 연약지반의 압밀거동)

  • Lee, Dal Won;Kang, Yea Mook;Kim, Seong Wan;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.145-155
    • /
    • 1997
  • The large scaled field test by prefabricated vertical drains was performed to evaluate the superiority of vertical discharge capacity for drain materials through compare and analyze the time-settlement behavior with drain spacing and the compression index and consolidation coefficient obtained by laboratory experiments and field monitoring system. 1. The relation of measurement settlement($S_m$) versus design settlement($S_t$) and measurement consolidation ratio($U_m$) versus design consolidation ratio($U_t$) were shown $S_m=(1.0{\sim}1.1)S_t$, $U_m=(1.13{\sim}1.17)U_t$ at 1.0m drain spacing and $S_m=(0.7{\sim}0.8)S_t$, $U_m=(0.92{\sim}0.99)U_t$ at l.5m drain spacing, respectively. 2. The relation of field compressing index($C_{cfield}$) and virgin compression index($V_{cclab.}$) was shown $C_{cfield}=(1.0{\sim}1.2)V_{cclab.}$, But it was nearly same value when considered the error with determination method of virgin compression index and prediction method of total settlement. 3. Field consolidation coefficient was larger than laboratory consolidation coefficient, and the consolidation coefficient ratio($C_h/C_v$) were $C_h=(2.4{\sim}3.0)C_v$. $C_h=(3.5{\sim}4.3)C_v$ at 1.0m and 1.5m drain spacing and increased with increasing of drain spacing. 4. The evaluation of vertical discharge capacity with drain spacing from the results of the consolidation coefficient ratio showed largely superior in case the Mebra drain and Amer drain than other drain materials at 1.0m and 1.5m drain spacing, while the values showed nearly same value in case same drain spacing.

  • PDF

Consolidation Behavior of Soft Ground by prefabricated Vertical Drains (연직드레인 공법에 의한 연약지반의 압밀거동)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.133-143
    • /
    • 2000
  • A large scale field test of prefabricated vertical drains was performed to anayze the effect of parameters of the very soft clay at a test site. compression index and the coefficient of horizontal consolidation obtained by back-analysis of settlement data were compared with those obtained by means of laboratory tests. Hyperbolic method, Asaoka meoth and curve fitting method were used to compute final settlement of coefficient of consolidation. The relationships of settlement measurement(Sm) versus design settlement(St) and the measurement consolidation ratio(Um) versus design consolidation (Ut) were shown as Sm=(1.0~1.1) St , Um=(1.13~1.17) Ut at 1.0m spacing of drain and Sm=(0.7~0.8)St, Um= (0.92~0.99) Ut at 1.5 m spacing of drain, respectively . The relationships of the field compression index(CcField) and virgin compression index(vcc lab) were shown as Ccfield =(1.0~1.2)vcc lab . But it was nearly within the same range when considering the error factor with the determination method of virgin compression index and the prediction back-analysis of the settlement data was larger than the coefficient of vertical consolidation, and the ratio of consolidation coefficient (Ch/Cv) was Ch =(2.4~2.9) Cv , Ch=(3.4~4.2) Cv at 1.0m and 1.5m spacing of drain, respectively.

  • PDF

Effect of the Overlapping Smear Zone on the Consolidation of Clayey Soil (스미어 영역 겹침이 점성토 지반의 압밀에 미치는 영향)

  • Yune, Chan-Young;Kim, Beom-Jun;Kang, Hee-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.13-22
    • /
    • 2013
  • To simulate the soft ground improved by vertical drain method and to investigate the effect of overlapping smear on subsequent consolidation behavior, a series of consolidation tests with a large consolidation chamber and mandrel insertion device were conducted. Based on the test result, numerical analysis was also performed to analyze the efficiency of the vertical drain method. Laboratory test and numerical analysis results showed that the effect of smear zone increased consolidation settlement but the overlapping smear zone decreased the consolidation settlement. In addition, vertical drain accelerated consolidation rate but narrowing the drain spacing did not affect the consolidation rate because of the effect of smear. The efficiency of consolidation rather decreased substantially when the smear zone was overlapped.

Characteristics of Circular β-Ga2O3 MOSFETs with High Breakdown Voltage (>1,000 V) (높은 항복전압(>1,000 V)을 가지는 Circular β-Ga2O3 MOSFETs의 특성)

  • Cho, Kyu Jun;Mun, Jae-Kyong;Chang, Woojin;Jung, Hyun-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.78-82
    • /
    • 2020
  • In this study, MOSFETs fabricated on Si-doped, MBE-grown β-Ga2O3 are demonstrated. A Si-doped Ga2O3 epitaxial layer was grown on a Fe-doped, semi-insulating 1.5 cm × 1 cm Ga2O3 substrate using molecular beam epitaxy (MBE). The fabricated devices are circular type MOSFETs with a gate length of 3 ㎛, a source-drain spacing of 20 ㎛, and a gate width of 523 ㎛. The device exhibited a good pinch-off characteristic, a high on-off drain current ratio of approximately 2.7×109, and a high breakdown voltage of 1,080 V, which demonstrates the potential of Ga2O3 for power device applications including electric vehicles, railways, and renewable energy.

High Voltage β-Ga2O3 Power Metal-Oxide-Semiconductor Field-Effect Transistors (고전압 β-산화갈륨(β-Ga2O3) 전력 MOSFETs)

  • Mun, Jae-Kyoung;Cho, Kyujun;Chang, Woojin;Lee, Hyungseok;Bae, Sungbum;Kim, Jeongjin;Sung, Hokun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This report constitutes the first demonstration in Korea of single-crystal lateral gallium oxide ($Ga_2O_3$) as a metal-oxide-semiconductor field-effect-transistor (MOSFET), with a breakdown voltage in excess of 480 V. A Si-doped channel layer was grown on a Fe-doped semi-insulating ${\beta}-Ga_2O_3$ (010) substrate by molecular beam epitaxy. The single-crystal substrate was grown by the edge-defined film-fed growth method and wafered to a size of $10{\times}15mm^2$. Although we fabricated several types of power devices using the same process, we only report the characterization of a finger-type MOSFET with a gate length ($L_g$) of $2{\mu}m$ and a gate-drain spacing ($L_{gd}$) of $5{\mu}m$. The MOSFET showed a favorable drain current modulation according to the gate voltage swing. A complete drain current pinch-off feature was also obtained for $V_{gs}<-6V$, and the three-terminal off-state breakdown voltage was over 482 V in a $L_{gd}=5{\mu}m$ device measured in Fluorinert ambient at $V_{gs}=-10V$. A low drain leakage current of 4.7 nA at the off-state led to a high on/off drain current ratio of approximately $5.3{\times}10^5$. These device characteristics indicate the promising potential of $Ga_2O_3$-based electrical devices for next-generation high-power device applications, such as electrical autonomous vehicles, railroads, photovoltaics, renewable energy, and industry.

The Characteristics of Consolidation and Permeability in Normally Consolidated Region Using a Remolded Decomposed Mudstone Soil (재성형된 이암풍화토를 이용한 정규압밀영역의 압밀 및 투수특성)

  • 김영수;김기영;이상웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • When clay foundations of embankments are treated with vertical drain, essentially, the strain occurs to vertical direction but the water flow is radial. The initial horizontal permeability and its variation with the vertical compression are key parameters for the choice of the type of drains, their spacing, and affect to the cost of the project. In this study, CRS consolidation test is performed to investigate the anisotropic characteristics of decomposed mudstone soil and direct permeability test is performed on the same specimens. The results of testing show that Ch is larger than Cv. specially, the Cv - $\sigma$v relationship for a soil sample is viewed from three different curve segments corresponding to overconsolidated, transition and normally consolidated states. The anisotropic ratio, rk(kh/kv) is 2.19. Coefficient of permeability in normally consolidated state is related to its void ratio and permeability parameter n. C can be determined from a linear plot of log[k(1+e)] versus log e. The slope, n, of graphs is the same, whereas the vertical intercept, log C, seems to vary somewhat for anisotropic.

  • PDF

Effects of Controlled Drainage Systems on Soybean (Glycine max L.) Growth and Soil Characteristics in Paddy Fields

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen Chung;Choi, Young Dae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.134-142
    • /
    • 2017
  • Crop production in rice paddy fields is of great importance because of declining rice consumption and the low self-sufficiency ratio for field crops in Korea. A controlled drainage system (CDS) is recognized as an effective means to adjust water table (WT) levels as needed and control soil water content to improve the soil environment for optimum crop growth. The present study evaluated the effects of a CDS on soil characteristics, including soil water distribution and soybean development in paddy fields. The CDS was installed with two drain spacing (3 m and 6 m) at the experimental paddy field at the National Institute of Crop Science, Miryang, Korea. It was managed with two WT levels (0.3 m and 0.6 m) during the growing season. Soil water content, electrical conductivity and plant available nitrogen content in the soil were significantly greater in the 0.3 m WT management plots than in the 0.6 m plot and the control. At the vegetative stage, chlorophyll content was significantly lower with higher WT control because of excess soil moisture, but it recovered after the flowering stage. Soybean yield increased with WT management and the 0.6 m WT treatment produced the greatest grain yield, $3.38ton\;ha^{-1}$, which was 50% greater than that of the control. The CDS directly influenced outflow through the drains, which significantly delayed nutrient loss. The results of this study indicated that WT management by CDS can influence soil characteristics and it is an important practice for high yielding soybean production in paddy fields, which should be considered the crop growth stages for stable crop production.