• Title/Summary/Keyword: Drag torque

Search Result 84, Processing Time 0.023 seconds

Numerical Analysis of Wind Turbine of Drag Force Type with change of Blade Number and Pitch Angle (수직항력식 터빈을 이용한 풍력발전 시스템의 형상 변화 및 피치각 변화에 관한 유동해석)

  • Park C.;Park G. S.;Park W. G.;Yoon S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • To analyze the performance of Wind turbine of the drag force type, 3-D RANS equations were solved by the iterative time marching method on sliding multiblock grid system. The numerical flow simulations by changing blade number and pitch angle were carried out : blade number = 15, 20 circumferentially; pitch angle = $30^{\circ},\; 50^{\circ}$ radially. The torque coefficient was also calculated.

  • PDF

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

Aerodynamic Drag Prediction of a Bearingless Rotor Hub (무베어링 로터 허브의 공기역학적 항력 예측)

  • Kang, Hee-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.655-661
    • /
    • 2012
  • In this study, aerodynamic drag of a bearingless rotor hub was predicted by computational fluid dynamics methodology using unstructured overset mixed meshes. The calculated results showed that the drag due to pressure forces rather than the viscous drag act as a major factor on both the fuselage and rotor hub, and the drag acting on the torque tube accounted for the largest portion in the hub drag. It was also found the hub drag accounted for 39 ~ 41% of the fuselage drag. Finally, the result confirmed the drag of the designed rotor hub satisfied the requirement of the aerodynamic hub drag by comparing with the drag trend of developed helicopter.

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

Requirement Analysis and Drag Prediction for the Aerodynamic Configuration of a Bearingless Rotor Hub (무베어링 로터 허브 형상에 대한 요구도 분석 및 항력 예측)

  • Kang, Hee-Jung
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The requirement for the aerodynamic hub drag, allocated from the system requirement of development of a bearingless rotor hub, was analyzed and embodied to be substantiated by the methodology assigned from the requirement. Drag prediction for the initial hub configuration was carried out by hand calculation using aerodynamic drag coefficients and the design change about the sectional shape of torque tube was suggested to satisfy the requirement. Finally, drag prediction was performed for the changed hub configuration by using unstructured overset mesh technique and parallel computation and the calculated result satisfied the requirement of the aerodynamic hub drag. It was found that the drag of final hub configuration was also within the range of drag inferred from the trendline of developed helicopter.

Rotor Coastdown and Acceleration Performances of High-speed Motors Supported on Ball Bearings and Gas Foil Bearings (볼 베어링 및 가스 포일 베어링으로 지지되는 고속 전동기의 회전체 관성정지 및 가속 성능 연구)

  • Mun, HyeongWook;Seo, JungHwa;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.123-131
    • /
    • 2019
  • This study characterizes the coastdown performances of two small electric motors supported on high-speed ball bearings (BBs) and gas foil bearings (GFBs), and it predicts their acceleration performances. The two motors have identical permanent magnetic rotors and mating stators. However, the shaft of the GFBs has a larger mass and polar/transverse moments of inertia than that of the BBs. Motor coastdown tests demonstrate that the rotor speed decreases linearly with the BBs and nonlinearly with the GFBs. A simple model for the BBs predicts a constant drag torque and linear decay of speed with time. The test data validate the model predictions. For the GFBs, the hydrodynamic lubrication model predictions reveal that the drag torque increases linearly with speed, and the speed decreases exponentially with time. The predictions agree very well with the test data in the speed range of 100-30 krpm. The boundary lubrication model predicts a constant drag torque and linear decay of speed with time. The predictions agree well with the test data below 15 krpm. Mixed lubrication occurs in the speed range of 30-15 krpm. Rotor acceleration performances are predicted based on the characteristics of deceleration performances. The GFBs require more time to reach 100,000 krpm than the BBs because of their larger shaft polar moment of inertia. However, predictions for the assumed identical polar moment of inertia reveal that the GFBs have a nearly identical acceleration performance to that of the BBs with a motor torque greater than $0.03N{\cdot}m$.

Optimal Design and Analysis of Ducted Fan Clutch With or Without Mechanical Lock-up (기계적 잠금장치의 적용여부에 따른 덕티드팬 클러치의 최적설계 및 분석)

  • Su-chul Kim;Jae-seung Kim;Sang-gon Moon;Geun-ho Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • Wet multi-disk clutch, a power switching device of the ducted fan, was optimized and results were analyzed. The clutch was divided into two types depending on whether a mechanical lock-up was applied or not. It was optimized under each design condition. Transfer torque capacity, friction material surface pressure, friction surface temperature, and drag torque were calculated as factors to optimize the clutch. The volume of separator plate and drag torque were used as the objective function for optimization. In the case of Type 1, which did not include a mechanical lock-up, the clutch could be operated regardless of the pitch angle of the ducted fan. However, the outer diameter of the friction surface was doubled, the volume was increased by 5~7 times, and the drag torque was increased by 7~12 times compared to those of Type 2, which included a mechanical lock-up.

An estimation method of full scale performance for pulling type podded propellers

  • Park, Hyoung-Gil;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.965-980
    • /
    • 2014
  • This paper presents a new estimation method of full scale propulsive performance for the pulling type podded propeller. In order to estimate the drag of pod housing, a drag velocity ratio, which includes the effects of podded propeller loading and Reynolds number, is presented and evaluated through the comparison of model test and numerical analysis. By separating the thrust of propeller blade and the drag of pod housing, extrapolation method of pod housing drag to full scale is deduced, and correction method of propeller blade thrust and torque to full scale is presented. This study utilized the drag coefficient ratio of the pod housing as a measure for expanding it to full scale, but in order to increase the accuracy of performance evaluation, additional study is necessary on the method for the full scale expansion via separating the drag of pod body, strut and fin which consist the pod housing.

A Instantaneous Torque Analysis of the Darrieus Wind Turbine varying with the rotating Angle of blade (다리우스 풍차의 회전각에 따른 순간 토오크 해석)

  • Oh, Chul-Soo;Kwon, Soon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.659-661
    • /
    • 1992
  • This paper deals with aerodynamic problems of the rotating blade of Darrieus wind turbine and its instantaneous torque. The instantaneous torque varying with the rotating angle of blade was obtained through resultant wind velocity, angle of attack, lift and drag coefficient. These are obtained from a given wing section, size and wind velocity.

  • PDF