• Title/Summary/Keyword: Drag reduction

Search Result 426, Processing Time 0.03 seconds

Numerical analysis of drag reduction of turbulent flow in a pipe (원관내 난류의 저항감소현상에 대한 수치해석)

  • 홍성진;김광용;최형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.733-739
    • /
    • 1999
  • A modified low-Re $k-\varepsilon$ model is used for the calculation of drag-reducing turbulent flow by polymer injection in a pipe. With the viscoelastic model, molecular viscosity in the definition of turbulent viscosity is related to elongations viscosity of the solution to account for the effects of drag reduction. Finite volume method is used for the discretization, and power-law scheme is used as a numerical scheme. Computed dimensionless velocity profiles are in good agreements with the experimental data in case of low drag reductions. However, in case of high drag reductions, they deviate largely from the measurements in the central zone of the flow field.

  • PDF

Drag Reduction Characteristics of Cylinder Having Square Dimpled Surface (표면에 정방형 딤플을 가진 원주의 항력저감 특성)

  • 노기덕;박지태;진윤식;여광수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.129-134
    • /
    • 2001
  • The drag reduction of the cylinder having square dimpled surface was studied by the measuring the drag force acting on the cylinder. The level of the drag reduction was changed by the arrangement shape of the square grooves and Reynolds number. The drag of the cylinder was reduced about 28% with proper arrangement of square grooves. The flow field around the cylinder having grooves at the minimum drag was visualized by using post color ink in order to see the influence of the grooves. In this case, the separation points were sifted rearward and the wake region was smaller than that of the smooth cylinder.

  • PDF

Drag Reduction Characteristics of Cylinder Having Square Dimpled Surface (표면에 정방형 딤플을 가진 원추의 항력저감 특성)

  • 노기덕;박지태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.233-239
    • /
    • 2002
  • The drag reduction of the cylinder having square dimpled surface was studied by the measuring the drag force acting on the cylinder. The level of the drag reduction was changed by the arrangement shape of the square grooves and Reynolds number. The drag of the cylinder was reduced about 28% with proper arrangement of square grooves. The flow field around the cylinder having grooves at the minimum drag was visualized by using post color ink in order to see the influence of the grooves. In this case, the separation points were silted rearward and the wake region was smaller than that of the smooth cylinder.

Key Parameters and Research Review on Counterflow Jet Study in USA for Drag Reduction of a High-speed Vehicle (초고속 비행체 항력감소를 위한 미국의 분사 제트 연구 동향과 핵심 변수)

  • Kim, Jihong;Kang, Seungwon;Lee, Jaecheong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • Various studies have been conducted for drag reduction of a high-speed vehicle by injecting counterflow jet from its nose cone. In this study, in order to obtain baseline data and key parameters for drag reduction method, the counterflow jet study of the USA is reviewed and summarized. The nose cone shapes of each study are hemisphere cylinder, truncated cone, and reentry capsule, and their test conditions are summarized accordingly. Key parameters for drag reduction are jet mach number, mass flow rate, and pressure ratio. Even though drag reduction effects show various results according to given test conditions, it is found that the drag reduction effect reaches up to 40~50%.

The Study on Drag Reduction Rates and Degradation Effects in Synthetic Polymer Solution with Surfactant Additives (계면활성제를 이용한 합성고분자 수용액의 마찰저항감소 및 퇴화 특성 향상 연구)

  • 이동민;김남진;윤석만;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.194-199
    • /
    • 2001
  • The turbulent flow resistance of water solution with polymer is reduced as compared with that of pure water. This effects is named th drag reduction and offers the significant reduction of the pumping power and the energy consumption. But the intense shear forces and the high temperature experienced by the polymer solution when passing through the pipes cause the degradation a loss of drag reduction effectiveness. Especially, the degradation behavior is found to be strongly dependent on temperature. This mechanical and thermal degradation can be avoided by adding materials such as surfactant to the polymer solution, which enhance the bonding force between molecules. In the present study, Copolymer and SDS were utilized and they were mixed in 10 different mixture ratios, while total concentration was fixed as 100wppm. Degradation of Copolymer-SDS mixture solutions was investigated experimentally in closed loop at the temperature of $10^{\circ}C\; and\; 80^{\circ}C$ with various flow average velocities of 1.5 m/sec, 3.0m/sec, and 4.5m/sec. Degradation characteristics of polymer solution without surfactant show a radical loss of drag reduction effectiveness at high temperature. Degradation alleviation ability of surfactant is especially effective at high temperature. Consequently, this results show that the addition of surfactant to the polymer solution can control unfavorable degradation phenomena for high temperature systems.

  • PDF

A STUDY ON THE AERODYNAMIC DRAG REDUCTION OF HIGH-SPEED TRAIN USING BOGIE SIDE FAIRING (고속열차 대차 측면 페어링 적용을 통한 공기저항 저감 연구)

  • Moon, J.S.;Kim, S.W.;Kwon, H.B.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The aerodynamic drag of high-speed train has been calculated and the effect of bogie side fairing on the aerodynamic drag has been investigated. Computational Fluid Dynamics (CFD) simulation based on steady-state 3 dimensional Navier-Stokes equation has been conducted employing FLUENT 12 and the aerodynamic model of HEMU-430x, the Korean next generation high-speed train under development has been built using GAMBIT 2.4.6. Three types of bogie side fairing configuration, the proto-type without fairing, half-covered fairing to avoid the interference with the bogie frame and full-covered fairing have been adopted to the train model to compare the drag reduction effects of the bogie side fairing configurations and the numerical results yields that the bogie side fairing can reduce the aerodynamic drag of the 6-car trainset up to 7.8%. The aerodynamic drag coefficient of each vehicle as well as the flow structures around the bogie system have also been examined to analyze the reason and mechanism of the drag reduction by bogie side fairing.

Pump and Temperature Effects on Drag Reducing Additives in Turbulent Pipe Flows (난류 관유동에서 마찰저항감소 첨가제에 대한 펌프와 온도의 영향)

  • Park, S.R.;Suh, H.S.;Yoon, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.330-337
    • /
    • 1996
  • The effects of pump and temperature on drag reducing characteristics were investigated with a polymer(PAAM : Polyacrylamide) and three kinds of surfactants(CTAC, STAC, Habon-G) in fully developed turbulent pipe flows with various experimental parameters such as additive concentration(30~500ppm), pipe diameter(4.65mm, 10.85mm), Reynolds number($4{\times}10^4{\sim}10^5$) and working fluid temperature($20{\sim}80^{\circ}C$). The pump effect on PAAM was severe such that the drag reduction rates obtained with pump were decreased upto 30% as compared with those obtained with compressed air in 4.65mm test section. The temperature effect on PAAM was noticeably considerable, that is, the higher temperaute, the less drag reduction rate. On the other hand, no significant pump effect on the surfactants was observed. The drag reducing effectiveness of CTAC was totally lost in the temperature ragne of 60 to $80^{\circ}C$, whereas STAC and Habon-G kept their distinct drag reducing capability at a temperature of $80^{\circ}C$. This study clearly elucidated that for DHC application of drag reducing additives, the pump and temperature effects as well as additive concentration and pipe diameter should be carefully taken into consideration.

  • PDF

Development of Numerical Tool for the DNS/LES of Turbulent Flow for Frictional Drag Reduction (마찰저항감소를 위한 난류유동의 DNS/LES 해석기술의 개발)

  • ;;Osama A. El-Samni
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • The friction drag reduction of a ship is of prime importance for the design and production of high-valued/high-tech ship. Thus, this study carried out the development of reliable numerical tools to identify the friction drag reduction mechanism for turbulent boundary layer on the ship surface and to deduce the optimum reduction technique by numerical experiment. The developed LES and DNS numerical tools were applied to simulate the turbulent channel flow These results were very well matched with previous results not only qualitatively but also quantitatively. The parallelization using MPI (Message Passing Interface) technique implemented in the developed code to speed up the simulation and to obtain the accurate results from the fine grid system was testified its computational efficiency.

An Experimental Study on Friction Reduction by Additives in a Water Channel

  • Kim Wu-Joan;Kim Hyoung-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.27-37
    • /
    • 2005
  • An experimental study has been carried out as a basic research for the development of the friction drag reduction technology for water-borne vehicles by injecting microbubbles or polymer solution. Experimental apparatus and procedures have been devised and prepared to measure the changes of the wall friction with the injection of additives and the basic experimental data on friction drag reduction are obtained for fully developed channel flows. The effects of key controlling parameters were investigated for higher drag reduction with varying the concentration and the injection rate of additives. The frictional drag has been reduced up to $25\%$ with the microbubble injection and $50\%$ with the polymer solution injection.

A Study on Drag Reduction of Cylindrical Underwater Body Using Sintered Mesh (소결 메쉬를 이용한 원통형 수중운동체 항력 감소 연구)

  • Jung, Chulmin;Paik, Bugeun;Kim, Kyungyoul;Jung, Youngrae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.195-203
    • /
    • 2018
  • Among the techniques of reducing the drag to increase the speed of underwater moving bodies, we studied on the drag reduction method by gas injection. Researches on gas injection method have been paid much attention to reduce the drag of vessels or pipe inner walls. In this study, we used a sintered metal mesh that can uniformly distribute fine bubbles by gas injection method, and applied it to a cylindrical underwater moving body. Using the KRISO medium-sized cavitation tunnel, we measured both the bubble size on the surface of the sintered mesh and the bubble distribution in the boundary layer. Then, drag reduction tests were performed on the cylinder type underwater moving models with cylindrical or round type tail shape. Experiments were carried out based on the presence or absence of tail jet injection. In the experiments, we changed the gas injection amount using the sintered mesh gas injector, and changed flow rate accordingly. As a result of the test, we observed increased bubbles around the body and confirmed the drag reduction as air injection flow rate increased.