• 제목/요약/키워드: Drag Reduction Factor

검색결과 26건 처리시간 0.021초

난류유동장에서 Shear - thinning 유체에 의한 마찰저항 감소에 관한 연구 (A Study on the Drag Reduction by Shear-thinning Fluid in Turbulent Flow Fields)

  • 차경옥;김재근;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.126-135
    • /
    • 1997
  • Drag reduction in polymer solutions is the phenomenon where by extremely dilute solutions of high molecular weight polymers exhibit frictional resistance to flow much lower than the pure solvent. This effect, largely unexplained as yet, has attracted the attention of polymer scientists and fluid flow specialists. Although applications are beginning to appear, the principle interest to data has been in attempting to relate the effect to the fluid mechanics of turbulent flow. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, and pool and boiling flow. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced by polymer addition in the single phase and two phase flow system. The objectives of the proposed investigation are primarily in identifying and developing high performance polymer additives for fluid transportations with the benefits of turbulent drag. Also we want to is to evaluate the drag reduction in horizontal flow by measuring pressure drop and mean velocity. Experimental results show higher drag reduction using co - polymer(A611P) then using polyacrylamide (PAAM) and faster degradation using PAAM than using A611P under the same superficial velocity.

  • PDF

주행속도 시속 500km 달성을 위한 고속철도 차량의 공기저항 저감 목표 및 달성 방안 (Target and Implementation of Aerodynamic Drag Reduction for High-speed Train to Reach Up to 500km/h Running Speed)

  • 권혁빈;윤수환;이형우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1320-1326
    • /
    • 2011
  • The maximum speed of high-speed rail is restricted to various factors such as track condition including slope and radius, tunnel and dynamic stability of vehicle. Among the various factors, traction effort and resistance to motion is principal and basic factor. In addition, at high speed over 300km/h, aerodynamic drag amounts up to 80% of resistance to motion, that it can be said that aerodynamic drag is the most important factor to decide the maximum speed of high-speed rail system. This paper deals with a measure to increase the maximum speed of high-speed train by reducing aerodynamic drag. The traction effort curve and resistance to motion curve of existing high-speed train under development has been employed to set up the target of aerodynamic drag reduction to reach up to 500km/h without modification traction system. In addition, the contribution of various sources of aerodynamic drag to total value has been analyzed and the strategy for implementation of aerodynamic drag reduction has been discussed based on the aerodynamic simulation results around the train using computational fluid dynamics.

  • PDF

카본나노튜브 나노유체의 동점성계수 증가로 인한 관내 유동에서의 항력 감소 (Drag Reduction Induced by Increased Kinematic Viscosity of Nanofluids Containing Carbon Nanotubes in A Horizontal Tube)

  • 유지원;정세권;최만수
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.271-277
    • /
    • 2013
  • This article reports the drag reduction phenomenon of aqueous suspensions containing carbon nanotubes (CNTs) flowing through horizontal tubes. Stable nanofluids were prepared by using a surfactant. It is found that the drag forces of CNT nanofluids were reduced at specific flow conditions compared to the base fluid. It is found that the friction factor of CNT nanofluids was reduced up to approximately 30 % by using CNT nanofluids. Increased kinematic viscosities of CNT nanofluids are suggested to the key factors that cause the drag reduction phenomenon. In addition, transition from laminar to turbulent flow is observed to be delayed when CNT nanofluids flow in a horizontal tube, meaning that drag reduction occurs at higher flow rates, that is, at higher Reynolds numbers.

비뉴우튼유체의 관이음음 유동저항에 관한 연구 (A study on the flow resistance in the various fittings for non-newtonian fluid)

  • 유상신;김춘식
    • 대한기계학회논문집
    • /
    • 제3권4호
    • /
    • pp.151-157
    • /
    • 1979
  • An experomental study on drg reduction in the rough tubes is presunted using the drrective drag reducing proymer solutions. The friction factors of the rough tubes follow the maximum drag reduction asymptote for the lower Reynolds numbers in the turbulent flow. However, as the Reynols number is increased the rougher tube results deviate from the maximum drag rduction asymptote sooner than the less rough tube results. There appears a systematic deviation from the maximum drag reduction asymptote depending on the relative roughness just as friction factors for the Newtonian hluid inthe rough tubes exhibit in the turbulent region. The minor loss results inthe various fittings such as elbows, tees, and gate valves are presunted The fittings show higher values of the loss coefficient in the drag reducing polymer solutions than in the Newtonian fluid, which is quite contrary to the drag reduction phenomenon in the straight tubes. The eqivalent length of the fittings for the drag reducing polymer solutions is many times longer than that for Newtonian fluids due to the increase of the loss coefficient and the decrease of the friction factor. It is speculated that the solid-like behavior of the polymer solutions in the abruptly changing folw passage plays a significant role in increasing the loss coefficient.

유연벽면 점탄성 소재 배합비와 저항저감 효과의 상관관계 (Correlation Between the Composition of Compliant Coating Material and Drag Reduction Efficiency)

  • 이인원;안남현
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.389-395
    • /
    • 2009
  • A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Pusan National University. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of $0.55{\times}0.25m^2$ size. A set of the insertions was designed and manufactured: 3 mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic$^{(R)}$ S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss factor were measured accurately for these materials in the frequency range from 40 Hz to 3 kHz. The aging of the materials (variation of their properties) for the period of one year was documented as well. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coating. The strong compliant coating achieved 5% drag reduction within a velocity range $20{\sim}40$ m/s while standard and weak coatings increased drag reduction.

비이온계 계면활성제 첨가수에 대한 관내 유동저항 감소 및 열전달 촉진에 관한 연구 (A Study on the Drag Reduction Effect and Heat Transfer Enhancement of Non ionized Surfactant and Water Mixture in a Circular Pipe Flow)

  • 김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.552-557
    • /
    • 2007
  • This paper has dealt with the effect of non ionized surfactant and water mixture on drag reduction and heat transfer enhancement in a circular pipe flow with experimentally. The test section was consisted of stainless steel pipe with inside diameter of 16mm. The wire coil was used to increase heat transfer in a pipe and the on ionized surfactant(Oleyl Dihydroxyethyl Amino Oxide, ODEAO) was used to reduce the drag force of water mixture with surfactant. The main parameters of this experiment were diameter and pitch of wire coil and the ratio of test section length and horizontal wire coil length. In this experiment, the acquired results were 1) Drag reduction effect existed in this ODEAO-water mixture, 2) Friction factor and heat transfer were increased with insertion the heat transfer enhancement coil, 3) With increasing of pitch ratio, heat transfer was decreased, and 4) Heat transfer was decreased by the decreasing of inserting coil diameter.

고체분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용(I) - 운동량 전달 기구 (Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particle Flow in a Pipe(I) - Mechanism of Momentum Transfer-)

  • 한기수;정명균;성형진
    • 대한기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.1301-1309
    • /
    • 1989
  • 본 연구의 목적은 Lumley의 저항감소 모델을 사용하여 여러 부하도하에서 부유유동의 유동 특성을 관찰하는 것으로, 특히 저항감소가 일어날 때와 일어나지 않을 때의 유동특성을 알아 보고자 한다.

Flow Around a Pipeline and Its Stability in Subsea Trench

  • Lee, Seungbae;Jang, Sung-Wook;Chul H. Jo;Hong, Sung-Guen
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.500-509
    • /
    • 2001
  • Offshore subsea pipelines must be stable against external loadings, which are mostly due to waves and currents. To determine the stability of a subsea pipeline on the seabed, the Morrison equation has been applied with prediction of inertia and drag forces. When the pipeline is placed in a trench, the force acting on it is reduced considerably. Therefore, to consider the stability of a pipeline in a trench, one must employ reduction factors. To investigate the stability of various trenches, we numerically simulated flows over various trenches and compared them with experimental data from PIV (Particle Image Velocimetry) measurements. The present results were produced ar Reynolds numbers ranging from 6$\times$10$^3$to 3$\times$10(sub)5 based on the diameter of the cylinder. Quasi-periodic flow patterns computed by large-eddy simulation were compared with experimental data in terms of mean flow characteristics fro typical trench configurations (W/H=1 and H/D=3, 4). The stability for various trench conditions was addressed in terms of mean amplitudes of oscillating lift and drag, and the reduction factor for each case was suggested for pipeline design.

  • PDF

점탄성 유동벽면의 파동 감쇠 특성 해석 (Analysis of Wave Decay Characteristics of Viscoelastic Compliant Coating)

  • ;정광효;전호환;이인원
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1155-1163
    • /
    • 2006
  • Calculation was carried out for phase velocity and deformation wave decay in a layer of viscoelastic material fixed tightly on the solid substrate. Analysis has been performed regarding the inner structure of the wave, i.e., the proportions between the vertical and horizontal displacements and their profiles. The wave characteristics depend strongly on media compressibility factor. The effect of viscous losses on parameters of the main oscillation mode was studied in detail. Results were compared with the model of coating with local deformation. A new experimental approach was made in order to measure such wave properties of a compliant coating as the dependency of deformation wave velocity on frequency and decay factor was made. The method for estimation of coating parameters enabling the drag reduction in turbulent flow was then refined.

내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발 (Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage)

  • 두정훈;윤현식;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2465-2470
    • /
    • 2008
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The Numerical simulations for the 5 different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermo-aerodynamic performance for the 5 different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, Volume and Area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 [%], and the value of maximum ratio of Nusselt number augmentation is 7.05 [%] when the riblet angle is $60^{\circ}$ (Case5). The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum Volume and Area goodness factor are obtained when the riblet angle is $60^{\circ}$ (Case5).

  • PDF