• Title/Summary/Keyword: Drag Force

Search Result 600, Processing Time 0.023 seconds

A Study on the Diffuser Inlet Shape of Thermocompressor for MED Desalination Plant (다중효용 담수설비용 열압축기의 디퓨져 입구부 형상에 관한 연구)

  • Jin, Chang-Fu;Song, Young-Ho;Kim, Kyung-Keun;Park, Gi-Tae;Chung, Han-Shik;Choi, Du-Youl
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.869-876
    • /
    • 2008
  • A thermocompressor is the equipment which compresses a vapor to a desired discharge pressure. Since it was first used as the evacuation pump for a surface condenser, it has been widely adopted for energy saving systems due to its high working confidence. In the present study, the geometrical analysis of the shape between the jet nozzle and the diffuser inlet, the drag force was calculated by means of the integrated equation of motion and the computational fluid dynamic (CFD) package called FLUENT. The computer simulations were performed to investigate the effects by the various suction flow rates, the distance from jet nozzle outlet to the diffuser inlet and the dimensions of the diffuser inlet section through the iterative calculation. In addition, the results from the CFD analysis on the thermocompressor and the experiments were compared for the verification of the CFD results. In the case of a jet nozzle, the results from the CFD analysis showed a good agreement with the experimental results. Furthermore, in this study, a special attention was paid on the performance of the thermocompressor by varying the diffuser convergence angle of $0.0^{\circ}$, $0.5^{\circ}$, $1.0^{\circ}$, $2.0^{\circ}$, $3.5^{\circ}$ and $4.5^{\circ}$. With the increase of the diffuser convergence angle. the suction capacity was improved up to the degree of $1.0^{\circ}$ while it was decreased over the degree of $1.0^{\circ}$.

A Study on the Characteristics of Flows around Building Groups Using a CFD Model (CFD 모델을 이용한 건물군 주변의 흐름 특성 연구)

  • Lee, Hankyung;Kim, Jae-Jin;Lee, Young-Gon
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.501-510
    • /
    • 2015
  • In this study, the characteristics of flows around building groups are investigated using a computational fluid dynamics (CFD) model. For this, building groups with different volumetric ratios in a fixed area are considered. As the volumetric ratio of the building group increases, the region affected by the building group is widened. However, the wind-speed reduced area rather decreases with the volumetric ratio near the ground bottom (z ${\lesssim}$ 0.7H, here, H is the height of the building group) and, above 0.7H, it increases. As the volumetric ratio decreases (that is, space between buildings was widened), the size of recirculation region decreases but flow recovery is delayed, resulting in the wider wind-speed reduced area. The increase in the volumetric ratio results in larger drag force on the flow above the roof level, consequently reducing wind speed above the roof level. However, above z ${\gtrsim}$ 1.7H, wind speed increases with the volumetric ratio for satisfying mass conservation, resultantly increasing turbulent kinetic energy there. Inside the building groups, wind speed decreased with the volumetric ratio and averaged wind speed is parameterized in terms of the volumetric ratio and background flow speed. The parameterization method is applied to producing averaged wind speed for 80 urban areas in 7 cities in Korea, showing relatively good performance.

Microstructural Characteristics of 800 MPa Grade High Strength Steel Weld Metals (800 MPa급 고강도강 용접금속의 미세조직 특성 비교 연구)

  • Lee, Jae-Hee;Kim, Sang-Hoon;Yoon, Byung-Hyun;Kim, Hwan-Tae;Kil, Sang-Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • Microstructural characteristics of two high strength (600 MPa & 800 MPa) weld metals produced by flux-cored arc welding process (FCAW) were evaluated. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at relatively high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 85% acicular ferrite and 15% low temperature forming phases (bainite, martensite). The prior austenite grain size of 800 MPa grade weld metal was decreased by solute drag force. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by a transmission electron microscopy (TEM). In both 600 MPa and 800MPa grade weld metals, the inclusions were mainly consisted of Ti-oxide and Mn-oxide, and the average size of inclusions was $0.7{\mu}m$. The 800 MPa grade weld metal exhibited higher tensile strength and similar toughness compared with the 600 MPa grade weld metal. This result is mainly due to a higher fraction of low temperature products and a lower fraction of grain boundary ferrite in the 800 MPa grade weld metal.

An experimental study on reefing effect on aerodynamics characteristics of cruciform parachute (십자형 낙하산의 Reefing 효과에 따른 공력특성에 관한 실험연구)

  • Lee, Chang-Gu;Kim, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.628-633
    • /
    • 2008
  • Cruciform parachute has advantage in manufacture and expanse compare with circular parachute. But it has disadvantage in stability. Wind tunnel test were conducted to investigate the effects of reefing-line on the cruciform parachutes with the purpose of finding aerodynamics characteristics of the parachute such as drag coefficient, normal force coefficient. Aerodynamics characteristics are measured accurately with 6-components pyramidal balance and load cells which were installed in the fixed-body. Four different models were tested and the test results were compared with each other. The aerodynamics characteristics were changed with reefing-line length. Separation edge was developed due to reefing-line also it made increasing of the stability. The cruciform parachute which improve stability is supposed to be used in variety purpose.

Modeling and Simulation of Aircraft Motion for Performance Assessment of Airborne AESA Radar Considering Wind and Vibration (바람과 진동을 고려한 항공기 탑재 AESA 레이다 성능 평가용 운동 모델링 및 시뮬레이션)

  • Lee, Donguk;Im, Jaehan;Lee, Haemin;Jung, Youngkwang;Jeong, Jaehyeon;Shin, Jong-Hwan;Lee, Sungwon;Park, June Hyune;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.903-910
    • /
    • 2020
  • This paper introduces a simulator to assess the impacts of the wind and the airframe vibration on the performance of the Active Electronically Scanned Array (AESA) radar mounted in an aircraft. The AESA radar is mounted on the nose cone of an aircraft, and vibration occurs due to the drag force. This vibration affects the behavior of the AESA radar and can cause phase errors in signal. The simulator adopts the geometric model for nose cone, the mathematical models on the rigid-body dynamics of the aircraft, the average/turbulent winds, and the mode/ambient vibrations to compute the position and the attitude of the radar accurately. Numerical studies reflecting a set of test scenarios were conducted to demonstrate the effectiveness of the developed simulator.

Numerical Study on the Side-Wind Aerodynamic Forces of Chambered 3-D Thin-Plate Rigid-Body Model (캠버가 있는 3차원 박판 강체 모형의 측풍 공기력에 대한 수치 연구)

  • Shin, Jong-Hyeon;Chang, Se-Myong;Moon, Byung-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.97-108
    • /
    • 2015
  • In the design of sailing yachts, para-glider, or high-sky wind power, etc., the analysis of side-wind aerodynamic forces exerted on a cambered 3-D model is very important to predict the performance of various machinery systems. To understand the essential flow physics around the three-dimensional shape, simplified rigid-body models are proposed in this study. Four parameters such as free stream velocity, angle of attack, aspect ratio, and camber are considered as the independent variables. Lift and drag coefficients are computed with CFD technique using ANSYS-CFX, and the results with the visualization of post-processed flow fields are analyzed in the viewpoint of fluid dynamics.

Effect of length of buoy line on loss of webfoot octopus pot (뜸줄 길이가 패류껍질어구의 유실에 미치는 영향)

  • LEE, Gun-Ho;CHO, Sam-Kwang;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.299-307
    • /
    • 2016
  • This study aims to investigate effects of the length of the buoy and sand bag line on the loss of webfoot octopus pot. A numerical modeling and simulation was carried out to analyze the process that the pot gear affected by wave using the mass spring model. Through the simulation, tensions of sand bag line under various condition were investigated by length of buoy and sand bag line. The drag force and coefficient k of an artificial shell used in the webfoot octopus pot was obtained from an experiment in a circular water channel, and the coefficient k was applied to the simulation. To verify the accuracy of the simulation model, a simple test was conducted into measuring a rope tension of a hanging shell under flow. Then, the test result was compared with the simulation. The lengths of the buoy line in the simulation were 1.12, 1.41, 1.80, 2.23, 2.69, and 3.17 times of water depth. The lengths of sand bag line were 10, 20, 30, and 40 meters, and conditions of water depth were 8, 15, 22 meters. 4 meter height and 8 second period of wave were applied to all simulations. As a results, the tension of the sand bag line was decreased as the buoy and sand bag line were increased. The minimum tension of the sand bag line was appeared in conditions that the length of the buoy line is twice of water depth and the sand bag line length is over 40 meters (except in case of depth 8 meters.).

Structural Safety Evaluation by Analysis of Pressure Variation Characteristics of Small Hydro Power Hydraulic Turbine Blades in Sewage Treatment Plant (하수처리장 소수력 수차 블레이드의 압력변화 특성 분석을 통한 구조안전성 평가)

  • Park, Yoo-Sin;Kim, Ki-Jung;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.126-131
    • /
    • 2017
  • Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.

Permeability of Viscous Flow Through Packed Bed of Bidisperse Hard Spheres (이분산 구형 입자로 구성된 충전층을 흐르는 점성 유체 흐름의 투과도)

  • Sohn, Hyunjin;Koo, Sangkyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.66-71
    • /
    • 2012
  • We deal with a problem to determine experimentally as well as theoretically permeability of incompressible viscous flow through packed bed of bidisperse hard spheres in size. For the size ratios of large to small spheres ${\lambda}$=1.25 and 2, we set up bidisperse packing and measured porosity and permeability at various volumetric ratios of small to large spheres ${\gamma}$. Bidisperse packing shows lower porosity and permeability than monodisperse packing does. Variation of porosity as a function of ${\gamma}$ does not match with that of permeability. A theoretical expression for predicting permeability of a viscous flow for packed bed of bidisperse packing is derived based on calculation of drag force acting on each sphere and its predictions are compared with the experimental data and those from some relations previously suggested. It is found that our theory shows better agreement with experimental results than the previous studies and is proved to be quite simple and accurate in estimating the permeability.

Effect of Operating Pressure on the Heat Transfer and Particle Flow Characteristics in the Syngas Quench System of an IGCC Process (IGCC 합성가스 급속 냉각시스템의 운전 압력에 따른 열유동 및 입자 거동 특성 연구)

  • Park, Sangbin;Yang, Joohyang;Oh, Junho;Ye, In-Soo;Ryu, Changkook;Park, Sung Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • In a coal gasifier for IGCC, hot syngas leaving the gasifier at about 1550oC is rapidly quenched by cold syngas recycled from the gas cleaning process. This study investigated the flow and heat transfer characteristics in the gas quench system of a commercial IGCC process plant under different operating pressures. As the operating pressure increased from 30 bar to 50 bar, the reduced gas velocity shortened the hot syngas core. The hot fly slag particles were retained within the core more effectively, and the heat transfer became more intensive around the hot gas core under higher pressures. Despite the high particle concentrations, the wall erosion by particle impaction was estimated not significant. However, large particles became more stagnant in the transfer duct due to the reduced gas velocity and drag force under higher pressures.