• 제목/요약/키워드: Doxorubicin (DOX)

검색결과 70건 처리시간 0.028초

맥동 전자기장 처리에 의한 독소루비신 유도 유방암 세포 생존저하 촉진 (Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells)

  • 우성훈;김윤석
    • 대한임상검사과학회지
    • /
    • 제56권1호
    • /
    • pp.73-84
    • /
    • 2024
  • 펄스 전자기장(pulsed electromagnetic field, PEMF)은 여러 항암제의 항암 효과를 향상시키는 것으로 알려져 있고 독소루비신(doxorubicin, DOX)은 유방암을 포함한 다양한 종류의 악성 종양을 치료하는 데 사용되는 항암제이다. 본 연구는 PEMF가 MCF-7 유방암 세포에 대한 DOX의 항암 효과 증진 여부를 조사하고 관련기전을 규명하기 위해 진행되었다. 본 연구팀은 DOX와 PEMF를 동시에 처리하면 DOX 단독 처리에 비해 MCF-7 유방암 세포의 생존율 감소가 더 커지는 것을 확인하였다. PEMF는 cyclin-dependent kinase 2의 인산화와 p53, p21, 사이클린 E2 및 polo like kinase 1의 단백질 발현에 영향을 주어 DOX 처리에 의한 G1 세포주기 정지를 더욱 증가시켰다. 또한, PEMF는 DOX 처리에 의한 Fas와 Bcl-2-associated X의 증가, myeloid leukemia 1과 survivin의 감소, 카스파제(caspase)-8/9/7의 활성 및 poly (adenosine diphosphate-ribose) polymerase 절단을 더욱 증가시켰다. 이러한 연구결과를 바탕으로, 본 연구팀은 PEMF는 DOX 처리에 의한 G1 세포주기 정지와 카스파제 의존적 세포자멸사를 더욱 증가시켜 DOX 처리에 의한 MCF-7 세포의 생존율 감소를 더욱 증진시킴을 확인할 수 있었다.

Biostable Poly(ethylene oxide)-b-poly(methacrylic acid) Micelles forpH-triggered Release of Doxorubicin

  • Choi, Young-Keun;Lee, Dong-Won;Yong, Chul-Soon;Choi, Han-Gon;Bronich, Tatiana K.;Kim, Jong-Oh
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권2호
    • /
    • pp.111-115
    • /
    • 2011
  • pH-sensitive cross-linked polymeric micelles were synthesized by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) with calcium ions as micellar templates. An anticancer drug, doxorubicin (DOX) was conjugated on the cross-linked ionic cores of micelles via acid-labile hydrozone bonds. The resulting DOX-conjugated, pH-sensitive micelles are stable at physiological conditions, whereas the release of DOX was significantly increased at the acidic pH. Such micelles were internalized to lysosomes, and acidic pH in lysosomes triggers the release of DOX upon internalization in MCF-7 breast cancer cells. The released DOX entered the cell nucleus and eventually killed cancer cells. Therefore, these data demonstrate that the pH-sensitive micelles could be a promising nanocarrier for delivery of anticancer drug, DOX.

Protective effects and mechanism of coenzyme Q10 and vitamin C on doxorubicin-induced gastric mucosal injury and effects of intestinal flora

  • Zhao, Xiaomeng;Feng, Xueke;Ye, Nan;Wei, Panpan;Zhang, Zhanwei;Lu, Wenyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.261-272
    • /
    • 2021
  • Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.

Doxorubicin Inhibits the Production of Nitric Oxide by Colorectal Cancer Cells

  • Jung, In-Duk;Lee, Jang-Soon;Yun, Seong-Young;Park, Chang-Gyo;Han, Jeung-Whan;Lee, Hyang-Woo;Lee, Hoi-Young
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.691-696
    • /
    • 2002
  • Doxorubicin (DOX) is an active and broad spectrum chemotherapeutic agent. Increased inducible nitric oxide synthase (NOS) expression and/or activity have been reported in several human tumors. While the relationship between DOX treatment and the enzymatic activity of endothelial NOS has been well characterized, little is known about the effects of DOX on the expression of iNOS in human cancer cells. In the present study, we characterized the effects of DOX on the nitric oxide (NO) production by colorectal cancer cells, DLD-1. IFN-${\gamma}$/IL-1$\beta$ (CM) increased the production of NO, whereas pretreatment of DOX inhibited the production of NO in response to CM in a dose dependent manner. The increased expressions of iNOS mRNA and protein by CM were completely blocked by DOX without affecting the iNOS mRNA stability. However, DOX activated nuclear factor-kB (NF-kB) in response to CM. Furthermore, the expression of inhibitor kB$\alpha$ was reduced by DOX in a dose dependent manner. Collectively, DOX inhibited the production of NO by DLD-1 cells, which is not linked to well known transcription factor, NF-kB. Therefore, further studies on the possible mechanisms of inhibitory effects of NO production by DOX would be worth pursuing.

전골수성 백혈병 세포주 HL-60에 대한 Doxorubicin 유발성 Apoptosis와 Anti-Fas 항체 유발성 Apoptosis의 비교 (Comparison between Doxorubicin and Anti-Fas Antibody induced poptosis in Promyelocytic Leukemia Cell Line HL-60)

  • 윤경식;설지연;오현정;이광수;이원규;정성철
    • Biomolecules & Therapeutics
    • /
    • 제7권1호
    • /
    • pp.22-28
    • /
    • 1999
  • Induction of apoptosis is considered to be the underlying mechanism that accounts for the efficiency of chemotherapeutic drugs. It has recently been proposed that doxorubicin (DOX) can induce apoptosis in human leukemic cells via the Fas/Fas Ligand (FasL) system. Comparison of Fas and FasL mRNA expression between drug- and anti-Fas antibody(Fas-Ab)- induced apoptosis was analyzed for examining the role of Fas/FasL system in the mediation of drug-induced apoptosis. After HL-60 cells were routinely cultured, MTT assay was performed for cytotoxicity test. Giemsa staining was carried out to monitor the apoptosis morphologically. By semiquantitative RT-PCR analysis, the expression of Fas and FasL at 4, 10, 24 hours was determined after DOX and Fas-Ab treatment. Dose-dependent cytotoxicity was induced by DOX-treatment, while Fas-Ab treatment showed the similar dose-dependent pattern but the cytotoxicity is not reached at LD$_{50}$ at 100 ng/ml concentration of Fas-Ab. In the 10ng/m1 DOX and 10ng/m1 Fas-Ab treated group, typical apoptotic cell morphology was shown such as fragmented nuclei and cell membrane budding in the Giemsa-stained slide. Fas mRNA expression was not changed significantly in the both groups. But, FasL mRNA expression was induced significantly at initial period of apoptosis. In this study, Fas/FasL interaction assumed to be involved in drug-induced apoptosis.s.

  • PDF

Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor

  • Zhang, Yaxin;Wang, Yuguang;Ma, Zengchun;Liang, Qiande;Tang, Xianglin;Tan, Hongling;Xiao, Chengrong;Gao, Yue
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.202-212
    • /
    • 2017
  • Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations ($-{\mu}M$) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.

Nω-Nitro-L-Arginine Methylester Ameliorates Myocardial Toxicity Induced by Doxorubicin

  • Mansour, Mahmoud Ahmed;El-Din, Ayman Gamal;Nagi, Mahmoud N.;Al-Shabanah, Othman A.;Al-Bekairi, Abdullah M.
    • BMB Reports
    • /
    • 제36권6호
    • /
    • pp.593-596
    • /
    • 2003
  • The effects of $N{\omega}$-nitro-L-arginine methylester (L-NAME) and L-arginine on cardiotoxicity that is induced by doxorubicin (Dox) were investigated. A single dose of Dox 15 mg/kg i.p. induced cardiotoxicity, manifested biochemically by a significant elevation of serum creatine phosphokinase (CPK) activity [EC 2.7.3.2]. Moreover, cardiotoxicity was further confirmed by a significant increase in lipid peroxides, measured as malon-di-aldehyde (MDA) in cardiac tissue homogenates. The administration of L-NAME 4 mg/kg/d p.o. in drinking water 5 days before and 3 days after the Dox injection significantly ameliorated the cardiotoxic effects of Dox, judged by the improvement in both serum CPK activity and lipid peroxides in the cardiac tissue homogenates. On the other hand, the administration of L-arginine 70 mg/kg/d p.o. did not protect the cardiac tissues against the toxicity that was induced by the Dox treatment. The findings of this study suggest that L-NAME can attenuate the cardiac dysfunction that is produced by the Dox treatment via the mechanism(s), which may involve the inhibition of the nitric oxide (NO) formation. L-NAME may, therefore, be a beneficial remedy for cardiotoxicity that is induced by Dox and can then be used to improve the therapeutic index of Dox.

Antiproliferative Effects of Free and Encapsulated Hypericum Perforatum L. Extract and Its Potential Interaction with Doxorubicin for Esophageal Squamous Cell Carcinoma

  • Amjadi, Issa;Mohajeri, Mohammad;Borisov, Andrei;Hosseini, Motahare-Sadat
    • 대한약침학회지
    • /
    • 제22권2호
    • /
    • pp.102-108
    • /
    • 2019
  • Objectives: Esophageal squamous cell carcinoma (ESCC) is considered as a deadly medical condition that affects a growing number of people worldwide. Targeted therapy of ESCC has been suggested recently and required extensive research. With cyclin D1 as a therapeutic target, the present study aimed at evaluating the anticancer effects of doxorubicin (Dox) or Hypericum perforatum L. (HP) extract encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles on the ESCC cell line KYSE30. Methods: Nanoparticles were prepared using double emulsion method. Cytotoxicity assay was carried out to measure the anti-proliferation activity of Dox-loaded (Dox NPs) and HP-loaded nanoparticles (HP NPs) against both cancer and normal cell lines. The mRNA gene expression of cyclin D1 was evaluated to validate the cytotoxicity studies at molecular level. Results: Free drugs and nanoparticles significantly inhibited KYSE30 cells by 55-73% and slightly affected normal cells up to 29%. The IC50 of Dox NPs and HP NPs was ~ 0.04-0.06 mg/mL and ~ 0.6-0.7 mg/mL, respectively. Significant decrease occurred in cyclin D1 expression by Dox NPs and HP NPs (P < 0.05). Exposure of KYSE-30 cells to combined treatments including both Dox and HP extract significantly increased the level of cyclin D1 expression as compared to those with individual treatments (P < 0.05). Conclusion: Dox NPs and HP NPs can successfully and specifically target ESCC cells through downregulation of cyclin D1. The simultaneous use of Dox and HP extract should be avoided for the treatment of ESCC.

Novel DOX-MTX Nanoparticles Improve Oral SCC Clinical Outcome by Down Regulation of Lymph Dissemination Factor VEGF-C Expression in vivo: Oral and IV Modalities

  • Abbasi, Mehran Mesgari;Monfaredan, Amir;Hamishehkar, Hamed;Seidi, Khaled;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6227-6232
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) remains as one of the most difficult malignancies to control because of its high propensity for local invasion and cervical lymph node dissemination. The aim of present study was to evaluate the efficacy of novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in terms of their potential to change the VEGF-C expression profile in a rat OSCC model. Materials and Methods: 120 male rats were divided into 8 groups of 15 animals administrated with 4-nitroquinoline-1-oxide to induce OSCCs. Newly formulated doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) and free doxorubicin were IV and orally administered. Results: Results indicated that both oral and IV forms of DOX-MTX-nanoparticle complexes caused significant decrease in the mRNA level of VEGF-C compared to untreated cancerous rats (p<0.05). Surprisingly, the VEGF-C mRNA was not affected by free DOX in both IV and oral modalities (p>0.05). Furthermore, in DOX-MTX NP treated group, less tumors characterized with advanced stage and VEGF-C mRNA level paralleled with improved clinical outcome (p<0.05). In addition, compared to untreated healthy rats, the VEGF-C expression was not affected in healthy groups that were treated with IV and oral dosages of nanodrug (p>0.05). Conclusions: VEGF-C is one of the main prognosticators for lymph node metastasis in OSCC. Down-regulation of this lymph-angiogenesis promoting factor is a new feature acquired in group treated with dual action DOX-MTX-NPs. Beside the synergic apoptotic properties of concomitant use of DOX and MTX on OSCC, DOX-MTX NPs possessed anti-angiogenesis properties which was related to the improved clinical outcome in treated rats. Taking together, we conclude that our multifunctional doxorubicin-methotrexate complex exerts specific potent apoptotic and anti-angiogenesis properties that could ameliorate the clinical outcome presumably via down-regulating dissemination factor-VEGF-C expression in a rat OSCC model.

Combination of Potassium Pentagamavunon-0 and Doxorubicin Induces Apoptosis and Cell Cycle Arrest and Inhibits Metastasis in Breast Cancer Cells

  • Putri, Herwandhani;Jenie, Riris Istighfari;Handayani, Sri;Kastian, Ria Fajarwati;Meiyanto, Edy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권5호
    • /
    • pp.2683-2688
    • /
    • 2016
  • A salt compound of a curcumin analogue, potassium pentagamavunon-0 (K PGV-0) has been synthesized to improve solubility of pentagamavunon-0 which has been proven to have anti-proliferative effects on several cancer cells. The purpose of this study was to investigate cytotoxic activity and metastasis inhibition by K PGV-0 alone and in combination with achemotherapeutic agent, doxorubicin (dox), in breast cancer cells. Based on MTT assay analysis, K PGV-0 showed cytotoxic activity in T47D and 4T1 cell lines with $IC_{50}$ values of $94.9{\mu}M$ and $49.0{\pm}0.2{\mu}M$, respectively. In general, K PGV-0+dox demonstrated synergistic effects and decreased cell viability up to 84.7% in T47D cells and 62.6% in 4T1 cells. Cell cycle modulation and apoptosis induction were examined by flow cytometry. K PGV-0 and K PGV-0+dox caused cell accumulation in G2/M phase and apoptosis induction. Regarding cancer metastasis, while K PGV-0 alone did not show any inhibition of 4T1 cell migration, K PGV-0+dox exerted inhibition. K PGV-0 and its combination with dox inhibited the activity of MMP-9 which has a pivotal role in extracellular matrix degradation. These results show that a combination of K PGV-0 and doxorubicin inhibits cancer cell growth through cell cycling, apoptosis induction, and inhibition of cell migration and MMP-9 activity. Therefore, K PGV-0 may have potential for development as a co-chemotherapeutic agent.