• Title/Summary/Keyword: Doxorubicin (DOX)

Search Result 70, Processing Time 0.025 seconds

Development of Doxorubicin overproducing Streptomyces Strain using Protoplast Regeneration (방선균 원형질체 재생에 의한 독소루비신 고생산성 균주개발)

  • 박희섭;박현주;김용훈;임상민;김동일;류욱상;김상린;김응수
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.289-293
    • /
    • 2003
  • Doxorubicin is an anthracycline-family polyketide compound with a very potent anti-cancer activity, typically produced by Streptomyces peucetius. In order to increase doxurubicin productivity, a semi-industrial doxorubicin-producing Streptomyces strain named BR-Dox was cultured in a R2YE liquid medium containing CaCO$_3$, and then converted to a cell wall-free protoplast using lysozyme treatment method, followed by PEG-mediated cell wall regeneration. Among several protoplast-regenerated Streptomyces BR-Dox strains, two independent isolates named BR-Dox4 and BR-Dox6 were visually selected using thin layer chromatography (TLC) based on the pigment overproducing phenotype. Comparing with Streptomyces BR-Dox parental strain, two protoplast-regenerated strains, BR-Dox4 and BR-Dox6 exhibited 25.2% and 12.2% higher doxorubicin productivity analyzed by high pressure liquid chromatography (HPLC), respectively. This result suggests that a protoplast-regeneration of an antibiotics-producing Streptomyces strain should be a promising strain development approach for antibiotics overproduction in Streptomyces species.

Protective effects of endurance exercise on skeletal muscle remodeling against doxorubicin-induced myotoxicity in mice

  • Kwon, Insu
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.11-21
    • /
    • 2020
  • [Purpose] Doxorubicin (DOX) is a potent anti-cancer drug that appears to have severe myotoxicity due to accumulation. The skeletal muscle has a regeneration capacity through satellite cell activation when exposed to extracellular stimulus or damage. Endurance exercise (EXE) is a therapeutic strategy that improves pathological features and contributes to muscle homeostasis. Thus, this study investigated the effect of EXE training in mitigating chronic DOX-induced myotoxicity. [Methods] Male C57BL/6J mice were housed and allowed to acclimatize with free access to food and water. All the mice were randomly divided into four groups: sedentary control (CON, n=9), exercise training (EXE, n=9), doxorubicin treatment (DOX, n=9), doxorubicin treatment and exercise training (DOX+EXE, n=9) groups. The animals were intraperitoneally injected with 5 mg/kg/week of DOX treatment for 4 weeks, and EXE training was initiated for treadmill adaptation for 1 week and then performed for 4 weeks. Both sides of the soleus (SOL) muscle tissues were dissected and weighed after 24 hours of the last training sessions. [Results] DOX chemotherapy induced an abnormal myofiber's phenotype and transition of myosin heavy chain (MHC) isoforms. The paired box 7 (PAX7) and myoblast determination protein 1 (MYOD) protein levels were triggered by DOX, while no alterations were shown for the myogenin (MYOG). DOX remarkably impaired the a-actinin (ACTN) protein, but the EXE training seems to repair it. DOX-induced myotoxicity stimulated the expression of the forkhead box O3 (FOXO3a) protein, which was accurately controlled and adjusted by the EXE training. However, the FOXO3a-mediated downstream markers were not associated with DOX and EXE. [Conclusion] EXE postconditioning provides protective effects against chronic DOX-induced myotoxicity, and should be recommended to alleviate cancer chemotherapy-induced late-onset myotoxicity.

Pretreatment Effects of Regular Aerobic Training on the IGF System and Hepatotoxicity Induced by Doxorubicin in Rats

  • Alishahi, Ailin;Roshan, Valiollah Dabidi;Hedayyati, Mehdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7427-7431
    • /
    • 2013
  • Aims: To examine the pretreatment effects of regular aerobic training on the IGF system (IGF-I, IGFBP-3 and IGF/IGFBP) and doxorubicin(DOX) induced hepatotoxicity in rats. Materials and Methods: Forty-eight male rats were divided into groups:(1) control+placebo (2) $control+DOX_{10}mg{\cdot}kg^{-1}$ (3) $control+DOX_{20}mg{\cdot}kg^{-1}$ (4) training+placebo (5) $training+DOX_{10}mg{\cdot}kg^{-1}$ (6) $training+DOX_{20}mg{\cdot}kg^{-1}$. Hepatotoxicity was induced by DOX with dosages of 10 and 20 $mg{\cdot}kg^{-1}$. The rats in groups 4, 5 and 6 performed treadmill running of 25-54 min/day and 15-20 m/min, 5 days/wk for 6 wks. At the end of the aerobic training protocol, rats in the 1 and 4 groups, in the 2 and 5 groups and in the 3 and 6 groups received saline solution, $DOX_{10}mg{\cdot}kg^{-1}$ and $DOX_{20}mg{\cdot}kg^{-1}$, respectively. Results: Administration of $DOX_{20}mg{\cdot}kg^{-1}$ caused a significant increase in IGF-1 and IGF-1/IGFBP-3, an insignificant decrease in IGFBP-3, as compared to the control+placebo group. However, after six weeks of aerobic training and DOX treatment with $10mg{\cdot}kg^{-1}$ and or/ $20mg{\cdot}kg^{-1}$ an insignificant decrease in IGF-1, an insignificant increase in IGFBP-3 and a significant decrease in IGF-1/IGFBP-3 were detected, in comparison to $C+DOX_{10}$ and $C+DOX_{20}$. Conclusions: Hepatotoxicity of doxorubicin is dose-dependent and pretreatment with regular aerobic training may improve DOX-induced hepatotoxicity by up-regulation of IGFBP3.

Effects of Morin on the Bioavailability of Doxorubicin for Oral Delivery in Rats

  • Son, Hong-Mook;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • The purpose of this study was to investigate the effects of morin, an antioxidant, on the bioavailability of doxorubicin (DOX) in rats. Thus, DOX was administered intravenously (10 mg/kg) or orally (50 mg/kg) with or without oral morin (0.5, 3 and 10 mg/kg). In the presence of morin, the total area under the plasma concentration-time curve (AUC) of DOX was significantly greater than that of the control. In the presence of 3 and 10 mg/kg of morin, the peak concentration $C_{MAX}$) was significantly higher than that of the control. Consequently, the absolute bioavailability (AB) of DOX in the presence of morin was 3.7-8.3%, which was significantly enhanced compared with those of the control group (2.7%). The relative bioavailability (RB) of DOX was 1.36 to 3.02 times higher than those of the control group. Compared to the intravenous control, the presence of morin increased the AUC of DOX, but was not significantly affected. The enhanced bioavailability of oral DOX by oral morin may be due to the inhibition of both P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A in the intestine and/or liver by morin. This result may suggest that the development of oral DOX combination with morin is feasible, which is more convenient than the i.v. dosage forms. The present study raised the awareness about the potential drug interactions by concomitant use of DOX with morin.

Synthesis and characterization of doxorubicin hydrochloride drug molecule-intercalated DNA nanostructures

  • Gnapareddy, Bramaramba;Deore, Pragati Madhukar;Dugasani, Sreekantha Reddy;Kim, Seungjae;Park, Sung Ha
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1294-1299
    • /
    • 2018
  • In this paper, we demonstrate the feasibility of constructing DNA nanostructures (i.e. DNA rings and double-crossover (DX) DNA lattices) with appropriate doxorubicin hydrochloride (DOX) concentration and reveal significant characteristics for specific applications, especially in the fields of biophysics, biochemistry and medicine. DOX-intercalated DNA rings and DX DNA lattices are fabricated on a given substrate using the substrateassisted growth method. For both DNA rings and DX DNA lattices, phase transitions from crystalline to amorphous, observed using atomic force microscopy (AFM) occurred above a certain concentration of DOX (at a critical concentration of DOX, $30{\mu}M$ of $[DOX]_C$) at a fixed DNA concentration. Additionally, the coverage percentage of DNA nanostructures on a given substrate is discussed in order to understand the crystal growth mechanism during the course of annealing. Lastly, we address the significance of optical absorption and photoluminescence characteristics for determining the appropriate DOX binding to DNA molecules and the energy transfer between DOX and DNA, respectively. Both measurements provide evidence of DOX doping and $[DOX]_C$ in DNA nanostructures.

Development of Doxorubin Overproducing Streptomyces Using Protoplast Regeneration

  • Park, Hui-Seop;Park, Hyeon-Ju;Kim, Eung-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.533-538
    • /
    • 2003
  • To establish an effective and reliable technique of mutation by protoplast regeneration in doxorubicin overproducing industrial strain, it is essential to optimize the conditions for protoplast regeneration. $CaCO_3$ as buffer, the negative effect of glucose was still evident without significant changes in pH, ruling out acidity as responsible for the suppression of anthracycline production and suggesting a direct effect of glucose on antibiotic biosynthesis. Production of doxorubicin was improved in doxorubicin overproducing industrial strain (BR-Dox) when protoplast regenerated. BR-Dox4 and BR-Dox6 of BR-Dox derivatives improved doxorubicin production by 25.2 % and 12.2 %, respectively.

  • PDF

Interrelation between Expression of ADAM 10 and MMP 9 and Synthesis of Peroxynitrite in Doxorubicin Induced Cardiomyopathy

  • Lim, Sung Cil
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.371-380
    • /
    • 2013
  • Doxorubicin is still main drug in chemotherapy with limitation of use due to adverse drug reaction. Increased oxidative stress and alteration of nitric oxide control have been involved in cardiotoxicity of doxorubicin (DOX). A Disintegrin And Metalloproteinase (ADAMs) are transmembrane ectoproteases to regulate cell-cell and cell-matrix interactions, but role in cardiac disease is unclear. The aim of this study was to determine whether DOX activates peroxynitrite and ADAM 10 and thus ADAM and matrix metalloproteinase (MMP) induce cardiac remodeling in DOX-induced cardiomyopathy. Adult male Sprague-Dawley rats were subjected to cardiomyopathy by DOX (6 times of 2.5 mg/kg DOX over 2-weeks), and were randomized as four groups. Then followed by 3, 5, 7, and 14 days after cessation of DOX injection. DOX-injected animals significantly decreased left ventricular fractional shortening compared with control by M-mode echocardiography. The expressions of cardiac nitrotyrosine by immunohistochemistry were significant increased, and persisted for 2 weeks following the last injection. The expression of eNOS was increased by 1.9 times (p<0.05), and iNOS was marked increased in DOX-heart compared with control (p<0.001). Compared to control rats, cardiac ADAM10- and MMP 9- protein expressions increased by 20 times, and active/total MMP 9 proteolytic activity showed increase tendency at day 14 after cessation of DOX injection (n=10, each group). DOX-treated $H_9C_2$ cell showed increased ADAM10 protein expression with dose-dependency (p<0.01) and morphometric changes showed the increase of ventricular interstitial, nonvascular collagen deposition. These data suggest that activation of cardiac peroxynitrite with increased iNOS expression and ADAM 10-dependent MMP 9 expression may be a molecular mechanism that contributes to left ventricular remodeling in DOXinduced cardiomyopathy.

Pretreatment Hepatoprotective Effect of Regular Aerobic Training Against Hepatic Toxicity Induced by Doxorubicin In Rats

  • Zolfagharzadeh, Fatemeh;Roshan, Valiollah Dabidi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2931-2936
    • /
    • 2013
  • Background: Doxorubicin is an anthracycline antibiotic commonly used to treat a variety of cancers as a most effective antitumor. However, its clinical use is associated with the toxic effects in numerous healthy tissues. Here we investigated the pretreatment effect of regular aerobic exercise on oxidative stress in rats acutely exposed to DOX-induced hepatotoxicity. Materials and Methods: Forty-eight Wistar male rats were randomly divided into 2 groups: control and training. The training protocol included treadmill running between 25 to 54 min/day and 15 to 20m/min, 5 days/week for 6 weeks. At the end of the exercise training protocol, rats from the control and trained groups were again randomly separated into 3 subgroups: DOX10mg/kg, DOX20mg/kg and saline. All treatments were carried 24 h after the last exercise bout and animals were sacrificed 24 h after DOX and saline injections. Results: Administration of DOX (10 and 20 $mg.kg^{-1}$) resulted in imbalance in biomarkers related to oxidants and antioxidants in liver tissue, as compared to control groups. Six weeks of pretreatment training led to a significant increase in nitric oxide (NO), superoxide dismutase (SOD) and glutathione peroxidase (GPX) as compared to the control+DOX 10 mg/kg group. Training before DOX 20 mg/kg administration also led to a significant increase in NO and SOD, and a significant decrease in malondialdehyde (MDA). In addition, there was a significant difference between DOX 10 mg/kg and DOX 20 mg/kg treatments in MDA levels, only. Conclusions: The results of the present study indicate that pretreatment with aerobic exercise induces positive adaptations and has a potential protective effect against doxorubicin (DOX)-induced hepatotoxicity with doses of 10 and 20 mg.kg.

Chemosensitizing effect and mechanism of imperatorin on the anti-tumor activity of doxorubicin in tumor cells and transplantation tumor model

  • Liang, Xin-li;Ji, Miao-miao;Liao, Zheng-gen;Zhao, Guo-wei;Tang, Xi-lan;Dong, Wei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.145-155
    • /
    • 2022
  • Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the antitumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.

Combination of Doxorubicin with Gemcitabine-Incorporated G-Quadruplex Aptamer Showed Synergistic and Selective Anticancer Effect in Breast Cancer Cells

  • Joshi, Mili;Choi, Jong-Soo;Park, Jae-Won;Doh, Kyung-Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1799-1805
    • /
    • 2019
  • Doxorubicin (DOX) is one of the most effective anticancer agents used for the treatment of multiple cancers; however, its use is limited by its short half-life and adverse drug reactions, especially cardiotoxicity. In this study, we found that the conjugate of DOX with APTA12 (Gemcitabine incorporated G-quadruplex aptamer) was significantly more cancer selective and cytotoxic than DOX. The conjugate had an affinity for nucleolin, with higher uptake and retention into the cancer cells than those of DOX. Further, it was localized to the nucleus, which is the target site of DOX. Owing to its mechanism of action, DOX has the ability to intercalate into the nucleotides thus making it a suitable drug to form a conjugate with cancer selective aptamers such as APTA12. The conjugation can lead to selectively accumulate in the cancer cells thus decreasing its potential nonspecific as well as cardiotoxic side effects. The aim of this study was to prepare a conjugate of DOX with APTA12 and assess the chemotherapeutic properties of the conjugate specific to cancer cells. The DOX-APTA12 conjugate was prepared by incubation and its cytotoxicity in MCF-10A (non-cancerous mammary cells) and MDA-MB-231 (breast cancer cells) was assessed. The results indicate that DOX-APTA12 conjugate is a potential option for chemotherapy especially for nucleolin expressing breast cancer with reduced doxorubicin associated side effects.