DOI QR코드

DOI QR Code

Protective effects of endurance exercise on skeletal muscle remodeling against doxorubicin-induced myotoxicity in mice

  • Kwon, Insu (Research Institute of Sports Science and Industry, Hanyang University)
  • Received : 2020.05.18
  • Accepted : 2020.06.22
  • Published : 2020.06.30

Abstract

[Purpose] Doxorubicin (DOX) is a potent anti-cancer drug that appears to have severe myotoxicity due to accumulation. The skeletal muscle has a regeneration capacity through satellite cell activation when exposed to extracellular stimulus or damage. Endurance exercise (EXE) is a therapeutic strategy that improves pathological features and contributes to muscle homeostasis. Thus, this study investigated the effect of EXE training in mitigating chronic DOX-induced myotoxicity. [Methods] Male C57BL/6J mice were housed and allowed to acclimatize with free access to food and water. All the mice were randomly divided into four groups: sedentary control (CON, n=9), exercise training (EXE, n=9), doxorubicin treatment (DOX, n=9), doxorubicin treatment and exercise training (DOX+EXE, n=9) groups. The animals were intraperitoneally injected with 5 mg/kg/week of DOX treatment for 4 weeks, and EXE training was initiated for treadmill adaptation for 1 week and then performed for 4 weeks. Both sides of the soleus (SOL) muscle tissues were dissected and weighed after 24 hours of the last training sessions. [Results] DOX chemotherapy induced an abnormal myofiber's phenotype and transition of myosin heavy chain (MHC) isoforms. The paired box 7 (PAX7) and myoblast determination protein 1 (MYOD) protein levels were triggered by DOX, while no alterations were shown for the myogenin (MYOG). DOX remarkably impaired the a-actinin (ACTN) protein, but the EXE training seems to repair it. DOX-induced myotoxicity stimulated the expression of the forkhead box O3 (FOXO3a) protein, which was accurately controlled and adjusted by the EXE training. However, the FOXO3a-mediated downstream markers were not associated with DOX and EXE. [Conclusion] EXE postconditioning provides protective effects against chronic DOX-induced myotoxicity, and should be recommended to alleviate cancer chemotherapy-induced late-onset myotoxicity.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2017S1A5B5A07064645), and I declare that I have no conflict of interests regarding the publication of this article.

References

  1. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21:440-6. https://doi.org/10.1097/FPC.0b013e32833ffb56
  2. van Norren K, van Helvoort A, Argiles JM, van Tuijl S, Arts K, Gorselink M, Laviano A, Kegler D, Haagsman HP, van der Beek EM. Direct effects of doxorubicin on skeletal muscle contribute to fatigue. Br J Cancer. 2009;100:311-4. https://doi.org/10.1038/sj.bjc.6604858
  3. Hayward R, Hydock D, Gibson N, Greufe S, Bredahl E, Parry T. Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function. J Physiol Biochem. 2013;69:177-87. https://doi.org/10.1007/s13105-012-0200-0
  4. Guigni BA, Callahan DM, Tourville TW, Miller MS, Fiske B, Voigt T, Korwin-Mihavics B, Anathy V, Dittus K, Toth MJ. Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress. Am J Physiol Cell Physiol. 2018;315:C744-c56. https://doi.org/10.1152/ajpcell.00002.2018
  5. Puri PL, Medaglia S, Cimino L, Maselli C, Germani A, De Marzio E, Levrero M, Balsano C. Uncoupling of p21 induction and MyoD activation results in the failure of irreversible cell cycle arrest in doxorubicin-treated myocytes. J Cell Biochem. 1997;66:27-36. https://doi.org/10.1002/(SICI)1097-4644(19970701)66:1<27::AID-JCB4>3.0.CO;2-#
  6. Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Godtel-Armbrust U, Wojnowski L. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer. 2014;14:842. https://doi.org/10.1186/1471-2407-14-842
  7. Chen Y, Jungsuwadee P, Vore M, Butterfield DA, St Clair DK. Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv. 2007;7:147-56. https://doi.org/10.1124/mi.7.3.6
  8. Gilliam LA, St Clair DK. Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid Redox Signal. 2011;15:2543-63. https://doi.org/10.1089/ars.2011.3965
  9. Rybalka E, Timpani CA, Cheregi BD, Sorensen JC, Nurgali K, Hayes A. Chemotherapeutic agents induce mitochondrial superoxide production and toxicity but do not alter respiration in skeletal muscle in vitro. Mitochondrion. 2018;42:33-49. https://doi.org/10.1016/j.mito.2017.10.010
  10. Gilliam LA, Lark DS, Reese LR, Torres MJ, Ryan TE, Lin CT, Cathey BL, Neufer PD. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction. Am J Physiol Endocrinol Metab. 2016;311:E293-301. https://doi.org/10.1152/ajpendo.00540.2015
  11. Min K, Kwon OS, Smuder AJ, Wiggs MP, Sollanek KJ, Christou DD, Yoo JK, Hwang MH, Szeto HH, Kavazis AN, Powers SK. Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. J Physiol. 2015;593:2017-36. https://doi.org/10.1113/jphysiol.2014.286518
  12. Gouspillou G, Scheede-Bergdahl C, Spendiff S, Vuda M, Meehan B, Mlynarski H, Archer-Lahlou E, Sgarioto N, Purves-Smith FM, Konokhova Y, Rak J, Chevalier S, Taivassalo T, Hepple RT, Jagoe RT. Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle. Sci Rep. 2015;5:8717. https://doi.org/10.1038/srep08717
  13. Gilliam LAA, Fisher-Wellman KH, Lin CT, Maples JM, Cathey BL, Neufer PD. The anti-cancer agent doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. Free Radic Biol Med. 2013;65:988-96. https://doi.org/10.1016/j.freeradbiomed.2013.08.191
  14. Fabris S, MacLean DA. Doxorubicin chemotherapy affects the intracellular and interstitial free amino acid pools in skeletal muscle. PLoS One. 2018;13:e0195330. https://doi.org/10.1371/journal.pone.0195330
  15. Fabris S, MacLean DA. Skeletal Muscle an Active Compartment in the Sequestering and Metabolism of Doxorubicin Chemotherapy. PLoS One. 2015;10:e0139070. https://doi.org/10.1371/journal.pone.0139070
  16. de Lima Junior EA, Yamashita AS, Pimentel GD, De Sousa LG, Santos RV, Goncalves CL, Streck EL, de Lira FS, Rosa Neto JC. Doxorubicin caused severe hyperglycaemia and insulin resistance, mediated by inhibition in AMPk signalling in skeletal muscle. J Cachexia Sarcopenia Muscle. 2016;7:615-25. https://doi.org/10.1002/jcsm.12104
  17. Fabris S, MacLean DA. Doxorubicin chemotherapy affects intracellular and interstitial nitric oxide concentrations in skeletal muscle : Effect of doxorubicin on intracellular and interstitial NO in skeletal muscle. Cell Biol Toxicol. 2016;32:121-31. https://doi.org/10.1007/s10565-016-9325-1
  18. Smuder AJ, Kavazis AN, Min K, Powers SK. Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. J Appl Physiol (1985). 2011;111:1190-8. https://doi.org/10.1152/japplphysiol.00429.2011
  19. Smuder AJ, Kavazis AN, Min K, Powers SK. Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. J Appl Physiol (1985). 2011;110:935-42. https://doi.org/10.1152/japplphysiol.00677.2010
  20. Kavazis AN, Smuder AJ, Powers SK. Effects of short-term endurance exercise training on acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle. J Appl Physiol (1985). 2014;117:223-30. https://doi.org/10.1152/japplphysiol.00210.2014
  21. Hydock DS, Lien CY, Jensen BT, Schneider CM, Hayward R. Characterization of the effect of in vivo doxorubicin treatment on skeletal muscle function in the rat. Anticancer Res. 2011;31:2023-8.
  22. Ertunc M, Sara Y, Korkusuz P, Onur R. Differential contractile impairment of fast- and slow-twitch skeletal muscles in a rat model of doxorubicin-induced congestive heart failure. Pharmacology. 2009;84:240-8. https://doi.org/10.1159/000241723
  23. Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol. 2016;219:205-13. https://doi.org/10.1242/jeb.128207
  24. Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol. 2006;209:2265-75. https://doi.org/10.1242/jeb.02182
  25. Fluck M. Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol. 2006;209:2239-48. https://doi.org/10.1242/jeb.02149
  26. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol. 2015;5:1027-59. https://doi.org/10.1002/cphy.c140068
  27. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010;120:11-9. https://doi.org/10.1172/JCI40373
  28. Wang YX, Rudnicki MA. Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol. 2011;13:127-33. https://doi.org/10.1038/nrm3265
  29. Dumont NA, Rudnicki MA. Characterizing Satellite Cells and Myogenic Progenitors During Skeletal Muscle Regeneration. Methods Mol Biol. 2017;1560:179-88. https://doi.org/10.1007/978-1-4939-6788-9_12
  30. Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat. 2003;203:89-99. https://doi.org/10.1046/j.1469-7580.2003.00195.x
  31. Zammit PS, Partridge TA, Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem. 2006;54:1177-91. https://doi.org/10.1369/jhc.6R6995.2006
  32. Kurabayashi M, Jeyaseelan R, Kedes L. Antineoplastic agent doxorubicin inhibits myogenic differentiation of C2 myoblasts. J Biol Chem. 1993;268:5524-9. https://doi.org/10.1016/S0021-9258(18)53352-4
  33. Kurabayashi M, Jeyaseelan R, Kedes L. Doxorubicin represses the function of the myogenic helix-loop-helix transcription factor MyoD. Involvement of Id gene induction. J Biol Chem. 1994;269:6031-9. https://doi.org/10.1016/S0021-9258(17)37565-8
  34. Garnier A, Fortin D, Zoll J, N'Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R. Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. Faseb J. 2005;19:43-52. https://doi.org/10.1096/fj.04-2173com
  35. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162-84. https://doi.org/10.1016/j.cmet.2012.12.012
  36. Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab. 2009;34:465-72. https://doi.org/10.1139/H09-045
  37. Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol (1985). 2011;110 264-74. https://doi.org/10.1152/japplphysiol.00993.2010
  38. Rocchi A, He C. Regulation of Exercise-Induced Autophagy in Skeletal Muscle. Curr Pathobiol Rep. 2017;5:177-86. https://doi.org/10.1007/s40139-017-0135-9
  39. Bredahl EC, Pfannenstiel KB, Quinn CJ, Hayward R, Hydock DS. Effects of Exercise on Doxorubicin-Induced Skeletal Muscle Dysfunction. Med Sci Sports Exerc. 2016;48:1468-73. https://doi.org/10.1249/MSS.0000000000000926
  40. de Lima EA, de Sousa LGO, de STAA, Marshall AG, Zanchi NE, Neto JCR. Aerobic exercise, but not metformin, prevents reduction of muscular performance by AMPk activation in mice on doxorubicin chemotherapy. J Cell Physiol. 2018;233:9652-62. https://doi.org/10.1002/jcp.26880
  41. Dickinson JM, D'Lugos AC, Mahmood TN, Ormsby JC, Salvo L, Dedmon WL, Patel SH, Katsma MS, Mookadam F, Gonzales RJ, Hale TM, Carroll CC, Angadi SS. Exercise Protects Skeletal Muscle during Chronic Doxorubicin Administration. Med Sci Sports Exerc. 2017;49:2394-403. https://doi.org/10.1249/MSS.0000000000001395
  42. Huang SC, Wu JF, Saovieng S, Chien WH, Hsu MF, Li XF, Lee SD, Huang CY, Huang CY, Kuo CH. Doxorubicin inhibits muscle inflammation after eccentric exercise. J Cachexia Sarcopenia Muscle. 2017;8:277-84. https://doi.org/10.1002/jcsm.12148
  43. Marques-Aleixo I, Santos-Alves E, Mariani D, Rizo-Roca D, Padrao AI, Rocha-Rodrigues S, Viscor G, Torrella JR, Ferreira R, Oliveira PJ, Magalhaes J, Ascensao A. Physical exercise prior and during treatment reduces sub-chronic doxorubicin-induced mitochondrial toxicity and oxidative stress. Mitochondrion. 2015;20:22-33. https://doi.org/10.1016/j.mito.2014.10.008
  44. Quinn CJ, Hydock DS. Effects of endurance exercise and doxorubicin on skeletal muscle myogenic regulatory factor expression. Muscles Ligaments Tendons J. 2017;7:418-25. https://doi.org/10.11138/mltj/2017.7.3.418
  45. Powers SK, Duarte JA, Le Nguyen B, Hyatt H. Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting. Pflugers Arch. 2019;471:441-53. https://doi.org/10.1007/s00424-018-2227-8
  46. Smuder AJ. Exercise stimulates beneficial adaptations to diminish doxorubicin-induced cellular toxicity. Am J Physiol Regul Integr Comp Physiol. 2019;317:R662-r72. https://doi.org/10.1152/ajpregu.00161.2019
  47. Schefer V, Talan MI. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp Gerontol. 1996;31:387-92. https://doi.org/10.1016/0531-5565(95)02032-2
  48. Mackay AD, Marchant ED, Munk DJ, Watt RK, Hansen JM, Thomson DM, Hancock CR. Multitissue analysis of exercise and metformin on doxorubicin-induced iron dysregulation. Am J Physiol Endocrinol Metab. 2019;316:E922-e30. https://doi.org/10.1152/ajpendo.00140.2018
  49. Powers SK, Bomkamp M, Ozdemir M, Hyatt H. Mechanisms of exercise-induced preconditioning in skeletal muscles. Redox Biol. 2020:101462.
  50. Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One. 2012;7:e35273. https://doi.org/10.1371/journal.pone.0035273
  51. Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR. Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci. 2006;119:1824-32. https://doi.org/10.1242/jcs.02908
  52. Olguin HC, Olwin BB. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol. 2004;275:375-88. https://doi.org/10.1016/j.ydbio.2004.08.015
  53. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol. 2004;166:347-57. https://doi.org/10.1083/jcb.200312007
  54. Coletti D, Aulino P, Pigna E, Barteri F, Moresi V, Annibali D, Adamo S, Berardi E. Spontaneous physical activity downregulates Pax7 in cancer cachexia. Stem Cells Int. 2016;2016:6729268. https://doi.org/10.1155/2016/6729268
  55. Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017;72:19-32. https://doi.org/10.1016/j.semcdb.2017.11.011
  56. Meadows E, Flynn JM, Klein WH. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice. PLoS One. 2011;6:e16184. https://doi.org/10.1371/journal.pone.0016184
  57. Salucci S, Baldassarri V, Falcieri E, Burattini S. alpha-Actinin involvement in Z-disk assembly during skeletal muscle C2C12 cells in vitro differentiation. Micron. 2015;68:47-53. https://doi.org/10.1016/j.micron.2014.08.010
  58. Sandri M, Coletto L, Grumati P, Bonaldo P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci. 2013;126:5325-33. https://doi.org/10.1242/jcs.114041
  59. Wagatsuma A, Shiozuka M, Takayama Y, Hoshino T, Mabuchi K, Matsuda R. Effects of ageing on expression of the muscle-specific E3 ubiquitin ligases and Akt-dependent regulation of Foxo transcription factors in skeletal muscle. Mol Cell Biochem. 2016;412:59-72. https://doi.org/10.1007/s11010-015-2608-7
  60. Yuan L, Han J, Meng Q, Xi Q, Zhuang Q, Jiang Y, Han Y, Zhang B, Fang J, Wu G. Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study. Oncol Rep. 2015;33:2261-8. https://doi.org/10.3892/or.2015.3845
  61. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857-68. https://doi.org/10.1016/S0092-8674(00)80595-4
  62. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell. 2004;117:225-37. https://doi.org/10.1016/S0092-8674(04)00302-2
  63. Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7:847-59. https://doi.org/10.1038/nrc2223
  64. Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121-9. https://doi.org/10.1016/j.biocel.2013.04.023
  65. Sandri M. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol. 2010;298:C1291-7. https://doi.org/10.1152/ajpcell.00531.2009