• Title/Summary/Keyword: Down-regulated

Search Result 1,304, Processing Time 0.038 seconds

Integrative Meta-Analysis of Multiple Gene Expression Profiles in Acquired Gemcitabine-Resistant Cancer Cell Lines to Identify Novel Therapeutic Biomarkers

  • Lee, Young Seok;Kim, Jin Ki;Ryu, Seoung Won;Bae, Se Jong;Kwon, Kang;Noh, Yun Hee;Kim, Sung Young
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2793-2800
    • /
    • 2015
  • In molecular-targeted cancer therapy, acquired resistance to gemcitabine is a major clinical problem that reduces its effectiveness, resulting in recurrence and metastasis of cancers. In spite of great efforts to reveal the overall mechanism of acquired gemcitabine resistance, no definitive genetic factors have been identified that are absolutely responsible for the resistance process. Therefore, we performed a cross-platform meta-analysis of three publically available microarray datasets for cancer cell lines with acquired gemcitabine resistance, using the R-based RankProd algorithm, and were able to identify a total of 158 differentially expressed genes (DEGs; 76 up- and 82 down-regulated) that are potentially involved in acquired resistance to gemcitabine. Indeed, the top 20 up- and down-regulated DEGs are largely associated with a common process of carcinogenesis in many cells. For the top 50 up- and down-regulated DEGs, we conducted integrated analyses of a gene regulatory network, a gene co-expression network, and a protein-protein interaction network. The identified DEGs were functionally enriched via Gene Ontology hierarchy and Kyoto Encyclopedia of Genes and Genomes pathway analyses. By systemic combinational analysis of the three molecular networks, we could condense the total number of DEGs to final seven genes. Notably, GJA1, LEF1, and CCND2 were contained within the lists of the top 20 up- or down-regulated DEGs. Our study represents a comprehensive overview of the gene expression patterns associated with acquired gemcitabine resistance and theoretical support for further clinical therapeutic studies.

Identification of Genes Modulated by High Extracellular Calcium in Coculture of Mouse Osteoblasts and Bone Marrow Cells by Oligo Chip Assay

  • Kim, Hyung-Keun;Song, Mi-Na;Jun, Ji-Hae;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.53-65
    • /
    • 2006
  • Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and $1,25(OH)_2vitaminD_3(VD3)$ by using mouse oligo 11 K gene chip. In the presence of 10 mM $[Ca^{2+}]e$ or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.

DNA Microarray Analysis of the Gene Expression Profile of Activated Human Umbilical Vein En-dothelial Cells. (올리고 마이크로어래이를 이용한 활성화된 인간 제대 정맥 내피세포의 유전자 발현 조사)

  • 김선용;오호균;이수영;남석우;이정용;안현영;신종철;홍용길;조영애
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.874-881
    • /
    • 2004
  • Angiogenesis has been implicated in progression of inflammation, arthritis, psoriasis, atherosclerosis as well as tumor growth and metastasis. Intensive studies have been carried out to develop a strategy for cancer treatment by blocking angiogenesis. During angiogenesis, endothelial proliferation and migration essentially occurs upon activation. In this study, we compared the expression profiles of human umbilical endothelial cells activated by incubating in vitro in the rich medium containing several growth factors, and non-activated ones. cDNA targets derived from total RNAs of HUVEC activated for 13 h in M199 medium containing endothelial cell growth supplement, 20% fetal bovine serum, and heparin, after reaching 70~80% confluency, or non-activated, were hybridized onto oligonucleotide microarrays containing 1,8864 genetic elements. Unsupervised hierarchical clustering analysis resulted in two subgroups on dendrogram exhibiting activated and non-activated HUVECs. We then extracted 122 outlier genes which were shown to be up-regulated or under-expressed by at least 2-folds in activated HUVECs. Among these, 32 annotated genes were up-regulated and 38 were down-regulated in activated HUVECs. Interestingly, genes involved in cell proliferation, motility, and inflammation/ immune response were up-regulated in activated HUVEC, whereas genes for cell adhesion or vessel morphogenesis/function were down-regulated. Unexpectedly, the expression of genes well-characterized as angiogenesis markers was not changed except Eph-B4, which was down-regulated about 4 folds. 52 unknown genes were also up- or down-regulated. Therefore, these results could provide an opportunity to targeting new vascular molecules for the development of anti-angiogenic molecules.

Chlorosis of Ogura-CMS Brassica rapa is due to down-regulation of genes for chloroplast proteins

  • Jeong, Seok-Won;Yi, Hankuil;Song, Hayoung;Lee, Soo-Seong;Park, Youn-Il;Hur, Yoonkang
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.115-124
    • /
    • 2017
  • Cytoplasmic male sterility (CMS) is a maternally inherited trait leading to loss of the ability to produce fertile pollen and is extensively used in hybrid crop breeding. Ogura-CMS was originally generated by insertion of orf138 upstream of atp8 in the radish mitochondrial genome and transferred to Brassica crops for hybrid breeding. Gene expression changes by dysfunctional mitochondria in Ogura-CMS result in pollen developmental defects, but little is known about gene expression patterns in vegetative tissue. To examine the interaction between nuclear and organellar regulation of gene expression, microarray and subsequent gene expression experiments were conducted with leaves of $F_1$ hybrid Chinese cabbage derived from self-incompatible (SI) or Ogura-CMS parents (Brassica rapa ssp. pekinensis). Out of 24,000 genes deposited on a KBGP24K microarray, 66 genes were up-regulated and 26 genes were down-regulated by over 2.5 fold in the CMS leaves. Up-regulated genes included stress-response genes and mitochondrial protein genes, while genes for ascorbic acid biosynthesis and thylakoid proteins were down-regulated. Most of the major component genes for light reactions of photosynthesis were highly expressed in leaves of both SI and CMS plants, but most of the corresponding proteins were found to be greatly reduced in leaves of CMS plants, indicating posttranscriptional regulation. Reduction in thylakoid proteins and chlorophylls led to reduction in photosynthetic efficiency and chlorosis of Ogura-CMS at low temperatures. This research provides a foundation for studying chloroplast function regulated by mitochondrial signal and for using organelle genome introgression in molecular breeding.

Differential Expression of Gene Profiles in MRGX-treated Lung Cancer

  • Kwon, Yong-Kyun;Lee, Seung-Yeul;Kang, Hwan-Soo;Sung, Jung-Suk;Cho, Chong-Kwan;Yoo, Hwa-Seung;Shin, Seungjin;Choi, Jong-Soon;Lee, Yeon-Weol;Jang, Ik-Soon
    • Journal of Pharmacopuncture
    • /
    • v.16 no.3
    • /
    • pp.30-38
    • /
    • 2013
  • Objectives: Modified regular ginseng extract (MRGX) has stronger anti-cancer activity-possessing gensenoside profiles. Methods: To investigate changes in gene expression in the MRGX-treated lung cancer cells (A549), we examined genomic data with cDNA microarray results. After completing the gene-ontology-based analysis, we grouped the genes into up-and down-regulated profiles and into ontology-related regulated genes and proteins through their interaction network. Results: One hundred nine proteins that were up- and down-regulated by MRGX were queried by using IPA. IL8, MMP7 and PLAUR and were found to play a major role in the anti-cancer activity in MRGX-treated lung cancer cells. These results were validated using a Western blot analysis and a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis. Conclusions: Most MRGX-responsive genes are up-regulated transiently in A549 cells, but down-regulated in a sustained manner in lung cancer cells.

Development of Protein Biomarkers for the Authentication of Organic Rice

  • Lee, Ju-Young;Lim, Jinkyu
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.355-361
    • /
    • 2015
  • The rice protein profiles of Oryza sativa L (Koshihikari) grown under organic and conventional cultivation regimes were compared on 2-D gels to develop diagnostic marker proteins for organic rice. The selected proteins, differentially expressed between organic and conventional rice, were compared with the differentially expressed proteins of another organic and conventional rice pairing, produced at a different location. In the first comparison among conventional, no-chemical, and organic rice grown in the same region, Korea, 13 proteins exhibiting differential expression in organic and conventionally grown plants were selected. Eight of the 13 proteins were down-regulated, and the 5 remaining proteins were up-regulated from conventional to organic rice. The second comparison pairing from Kyungju, revealed 12 differentially expressed proteins, with 8 down-regulated and 4 up-regulated proteins. Ten of the differentially expressed proteins that overlapped between the two comparison sets could not be clustered into any functional group using a functional annotation clustering tool. Further comparisons using another set of conventional and organic rice, belonging to a different variety of Oryza sativa L and produced in Sanchung, revealed 8 differentially expressed proteins, 5 of which were down-regulated and 3 of which were upregulated in the organic rice. Overall, 3 differentially expressed proteins were commonly found in all three organic rice crops. These 3 proteins, along with other overlapping differentially expressed proteins, can provide a good starting point for the development of signature proteins that can be used for the authentication of organic rice with a follow-up studies with more comparison sets.

Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated regulation of BACH-1 and HO-1

  • Aayadi, Hoda;Mittal, Smriti P.K.;Deshpande, Anjali;Gore, Makarand;Ghaskadbi, Saroj S.
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.560-565
    • /
    • 2017
  • Geraniin, a hydrolysable tannin, used in traditional medicine in Southeast Asia, is known to exhibit various biological activities. As an antioxidant it is known to up-regulate phase II enzyme Heme oxygenase-1 (HO-1). However its mechanism is not clearly understood. Nuclear factor erythroid-derived 2 related factor 2 (Nrf-2) is transcriptionally up-regulated by Extracellular signal-regulated kinase (ERK) 1/2 and retained in nucleus due to inactivated Glycogen synthase kinase 3 beta ($GSK-3{\beta}$). Geraniin additionally down-regulates expression of microRNA 217 and 377 (miR-217 and miR-377) which target HO-1 mRNA. Expression of BTB and CNC homolog 1 (BACH-1), another regulator of HO-1, is also down-regulated by up-regulating microRNA 98 (miR-98), a negative regulator of BACH-1. Thus, geraniin up-regulates HO-1 expression both through activating its positive regulator Nrf-2 and by down-regulating its negative regulator BACH-1. Up-regulation of HO-1 also confers protection to HepG2 cells from tertiary butyl hydroperoxide (TBH) induced cytotoxicity.

Expressional Analysis of Two Genes (Scd1 and Idi1) Down-regulated by Starvation Stress (영양고갈-스트레스에 의해서 하강발현하는 유전자(Scd1과 Idi1)의 분석)

  • Cho, Junho;Kwon, Young-Sook;Kim, Dong-Il;Kim, Bok Jo;Kwon, Kisang
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.762-768
    • /
    • 2014
  • Diet exerts a major stress on the body and may affect gene expression and physiological functions. Understanding of cellular responses during starvation is necessary in developing strategies to reduce damage caused by diet. In this study, we isolated 10 genes (Comt, RGN, Scd1, Temt, Idi1, Fabp5, Car3, Cyp2c70, Pinx1, and Poldip3) that are down-regulated in starvation and are closely related to liver metabolism. Water supply during starvation had no effect on the induction of apoptosis, autophagy, and ERQC. The genes down-regulated by starvation were associated with many related pathways rather than limited to the liver homeostasis pathway. Water supply during starvation is important. However, maintaining NaCl homeostasis is more important. The results are thought to be closely related to gender-specific metabolism in starvation and NaCl.

Effects of Allicin on the Gene Expression Profile of Mouse Hepatocytes in vivo with DNA Microarray Analysis

  • Park, Ran-Sook
    • Nutritional Sciences
    • /
    • v.8 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The major garlic component, Allicin [diallylthiosulfinate, or (R, S)-diallyldissulfid-S-oxide] is known for its medicinal effects, such as antihypertensive activity, microbicidal activity, and antitumor activity. Allicin and diallyldisulfide, which is a converted form of allicin, inhibited the cholesterol level in hepatocytes, in vivo and in vitro. The metabolism of allicin reportedly occurs in the microsomes of hepatocytes, predominantly with the contribution of cytochrome P-450. However, little is known about how allicin affects the genes involved in the activity of hepatocytes in vivo. In the present study, we used the short-term intravenous injection of allicin to examine the in vivo genetic profile of hepatocytes. Allicin up-regulate ten genes in the hepatocytes. For example, the interferon regulator 1 (IRF-I), the wingless-related MMTV (mouse mammary tumor virus) integration site 4 (wnt-4), and the fatty acid binding protein 1. However, allicin down-regulated three genes: namely, glutathione S-transferase mu6, a-2-HS glycoprotein, and the corticosteroid binding globulin of hepatocytes. The up-regulated wnt-4, IRF-1, and mannose binding lectin genes can enhance the growth factors, cytokines, transcription activators and repressors that are involved in the immune defense mechanism. These primary data, which were generated with the aid of the Atlas Plastic Mouse 5 K Microarray, help to explain the mechanism which enables allicin to act as a therapeutic agent, to enhance immunity, and to prevent cancer. The data suggest that these benefits of allicin are partly caused by the up-regulated or down-regulated gene profiles of hepatocytes. To evaluate the genetic profile in more detail, we need to use a more extensive mouse genome array.

Inhibition of the NEDD8 Conjugation Pathway by shRNA to UBA3, the Subunit of the NEDD8-Activating Enzyme, Suppresses the Growth of Melanoma Cells

  • Cheng, Fang;Chen, Hao;Zhang, Lei;Ruo-Hong, Li;Liu, Yi;Sun, Jian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2012
  • Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), a ubiquitin-like protein, mainly functions through covalent ligation to cullin proteins. Conjugation of NEDD8 with cullins can promote ubiquitination, which plays a critical role in the degradation of many proteins. UBA3 is the subunit of NEDD8-activating enzyme which is one of the keys for NEDD8 linkage to cullin proteins. Previous research showed NEDD8 conjugation to be up-regulated in highly proliferative cell lines. In the present study, up-regulated NEDD8 conjugation was observed in melanoma cell lines by Western blot analysis. After down-regulation with a RNAi to UBA3, proliferation of M14 was suppressed in vitro and in vivo. In conclusion, up-regulated NEDD8 conjugation may be involved in the development of melanoma. Interference in this pathway might offera promising method for melanoma therapy.