• 제목/요약/키워드: Doubly fed induction generator

검색결과 151건 처리시간 0.031초

컴퓨터 시뮬레이션과 실규모 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 응동특성 분석 (Dynamic Interaction Analysis of Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator)

  • 윤동진;한병문;최영도;전영수;정병창;정용호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1047_1048
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

  • PDF

컴퓨터시뮬레이션과 실용량 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 성능비교분석 (Performance Comparison Analysis for Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator)

  • 윤동진;오승진;한병문;정병창;정용호;최영도;전영수
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.263-269
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

풍력발전 한계운전용량에 대한 계통영향 분석 (Analysis of effect on power system considering the maximum penetration limit of wind power)

  • 명호산;김봉언;김형택;김세호
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.19-25
    • /
    • 2012
  • About supply and demand to see that you need to match, the limitations of wind power capacity is low demand and the commitment of the general generator will exist between the minimum generation. if the turbine's output can be controlled, The limitation of wind power capacity will be adopted based on instant power generation. Namely, The minimum limits of wind power generation based load operation by calculating the amount that is higher than if the output should be restricted to highest operation. in this paper, we committed to the demand for low enough that the combination of the general generator of wind power capacity to accommodate the operation of determining whether the limit is intended to. For this, power system analysis program PSS/E was used, Jeju system by implementing the model simulations were performed.

이중여자 유도형 풍력발전기 기반 풍력단지의 계통 연계점 전압제어 (Voltage Control for a Wind Power Plant Based on the Available Reactive Current of a DFIG and Its Impacts on the Point of Interconnection)

  • ;김진호;;강용철
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.23-30
    • /
    • 2016
  • Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gain of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.

영구자석형 동기발전기를 이용한 풍력단지의 플리커 저감 (Flicker Mitigation in a Wind Farm by Controlling a Permanent Magnet Synchronous Generator)

  • 팜반호안;김대현;안진홍;김일환;오성보;김호찬;김세호
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1163-1168
    • /
    • 2009
  • The power quality of wind energy becomes more and more important in connecting wind-farms to the grid, especially weak grid. This paper presents the simulation of a wind farm of a permanent magnet synchronous generator (PMSG) and a doubly fed induction generator (DFIG). Flicker mitigation is performed by using PMSG as a static synchronous compensator (STATCOM) to regulate the voltage at the point of common coupling (PCC). A benefit of the measure is that integrating two function of to control the active power flow and to reduce the voltage flicker in a wind farm. Simulation results show that controlling PMSG is an effective and economic measure in reducing the flicker during continuous operation of grid connected wind turbines regardless of short circuit capacity ratio, turbulence intensity and grid impedance angle.

풍속 변동 시 주파수 유지를 위한 풍력발전기 출력 평활화 제어 (Power smoothing scheme of a wind turbine generator for reducing the frequency deviation in varying wind conditions)

  • 김연희;이진식;강용철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.181-182
    • /
    • 2015
  • In a power system with a high wind power penetration level, the output power of a wind power plant (WPP) might give negative impacts on the frequency control of a power system. This paper proposes a power smoothing scheme of a wind turbine generator (WTG) to reduce the frequency deviation. To do this, an additional control loop is used, the output of which depends on the frequency deviation. The gain of the additional loop is determined depending on the kinetic energy (KE) of a WTG; in the under frequency condition, the gain is set to be proportional to the releasable KE of a WTG; otherwise, it is set to the maximum value. The performance of the proposed scheme is investigated for 100-MW doubly-fed induction generator based WPP using an EMTP-RV simulator under various wind conditions. The results show that the proposed scheme successfully reduces the frequency deviation.

  • PDF

DFIG의 역률특성 (Power Factor Characteristic of DFIG)

  • 김철호;이우석;공정식;서영택;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.613-615
    • /
    • 2002
  • This paper deals with power factor of doubly fed induction generator for wind power generation in range of sub- and super-synchronous speed. To supply active and reactive power to grid. stator is connected to grid directly and rotor is connected to back-to-back PWM inverter for excitation. According to excitation level. DFIG could operate at the different mode. i.e., unity, leading, and lagging power factor.

  • PDF

이중여자 유도형 풍력발전기의 유.무효전력 제어 (Active and Reactive Power Control of Doubly-Fed Induction-type Wind Generator)

  • 정병창;정용호;김성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.205-207
    • /
    • 2008
  • 본 논문에서는 권선형 유도기를 사용한 이중여자 유도형 풍력발전기용 제어기를 개발하였다. 제어기는 발전기의 회전속도와 발전량, 기리고 계통 전압 등의 조건에 따라서 발전기를 자동으로 제어한다. 발전이 가능한 조건에서는 발전기의 유효전력은 최적값이 되도록 제어된다. 또한, 풍력발전 시스템의 무효전력은 계통 운영자의 요구, 계통 전압, 그리고 발전량 등을 고려하여 무효전력 제어 모드를 스스로 결정하도록 하였다.

  • PDF

계통전압 불평형시 DFIG를 이용한 풍력발전 시스템의 동적 모델링 및 제어기법 (An improved control strategy for a DFIG in wind turbine under unbalanced condition)

  • 이솔빈;김서형;이교범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.200-202
    • /
    • 2009
  • 본 논문은 계통전압 불평형시 이중여자 유도형 풍력발전기 (Doubly Fed Induction Generator-DFIG)의 토크 리플 저감과 dc-link 전압의 맥동을 제거하는 기법을 제안한다. 계통전압 불평형 시 DFIG의 동적 모델링을 통해 토크 맥동 성분과 dc-link 전압 리플 성분을 수식화 한다. 유도된 수식을 기반으로 회전자 측 컨버터는 정상분과 역상분을 독립적으로 제어하는 듀얼 전류 제어기를 통해 토크 리플을 저감하며, 계통 측컨버터는 전력이론을 통해 계산된 보상 전류 지령치를 통해 cd-link 전압 맥동을 제거한다. 3kW급 풍력 발전 시스템에 제안하는 기법을 적용한 시뮬레이션 결과를 통해 타당성을 입증한다.

  • PDF

The Harmonic Current Mitigation of DFIG under Unbalanced Grid Voltage and Non-linear Load Conditions

  • Thinh, Quach Ngoc;Kim, Eel-Hwan
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.83-84
    • /
    • 2011
  • This paper presents an analysis and a novel strategy for a doubly fed induction generator (DFIG) based wind energy conversion system under unbalanced grid voltage and non-linear load conditions. A proportional-resonant (PR) current controller is applied in both grid side converter (GSC) and rotor side converter (RSC). The RSC is controlled to mitigate the stator active power and the rotor current oscillations at double supply frequency under unbalanced grid voltage while the GSC is controlled to mitigate ripples in the dc-link voltage and compensate harmonic components of the network current. Simulation results using Psim simulation program are presented for a 2 MW DFIG to confirm the effectiveness of the proposed control strategy.

  • PDF