• Title/Summary/Keyword: Doubly fed induction generator

Search Result 151, Processing Time 0.025 seconds

Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance (계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략)

  • Han, Dae-Su;Suh, Yong-Sug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

Reduction of Current Ripples due to Current Measurement Errors in a Doubly Fed Induction Generator

  • Park, Gwi-Geun;Hwang, Seon-Hwan;Kim, Jang-Mok;Lee, Kyo-Beum;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.313-319
    • /
    • 2010
  • This paper proposes a new compensation algorithm for the current measurement errors in a DFIG (Doubly Fed Induction Generator). Generally, current measurement path with current sensors and analog devices has non-ideal factors like offset and scaling errors. As a result, the dq-axis currents of the synchronous reference frame have one and two times ripple components of the slip frequency. In this paper, the main concept of the proposed algorithm is implemented by integrating the 3-phase rotor currents into the stationary reference frame to compensate for the measured current ripples in a DFIG. The proposed algorithm has several beneficial features: easy implementation, less computation time, and robustness with regard to variations in the electrical parameters. The effectiveness of the proposed algorithm is verified by several experiments.

Analysis and Compensation of Current Measurement Errors in a Doubly Fed Induction Generator

  • Son, Yung-Deug;Im, Won-Sang;Park, Han-Seok;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.532-540
    • /
    • 2014
  • It is necessary to measure the current of rotor for controlling the active and reactive power generated by the stator side of the doubly fed induction generator (DFIG) system. There are offset and scaling errors in the current measurement. The offset and scaling errors cause one and two times current ripples of slip frequency in the synchronous reference frame of vector control, respectively. This paper proposes a compensation method to reduce their ripples. The stator current is variable according to the wind force but the rotor current is almost constant. Therefore input of the rotor current is more useful for a compensation method. The proposed method adopts the synchronous d-axis current of the rotor as the input signal for compensation. The ripples of the measurement errors can be calculated by integrating the synchronous d-axis stator current. The calculated errors are added to the reference current of rotor as input of the current regulator, then the ripples are reduced. Experimental results show the effectiveness of the proposed method.

Stochastic Stability Analysis of the Power System Incorporating Wind Power using Measurement Wind Data

  • Parinya, Panom;Sangswang, Anawach;Kirtikara, Krissanapong;Chenvidhya, Dhirayut
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1110-1122
    • /
    • 2018
  • This paper proposes an alternative method to evaluate the effect of wind power to the power system stability with small disturbance. Alternatively, available techniques for stability analysis of a power system based on deterministic methods are less accurate for high penetration of wind power. Numerical simulations of random behaviors are computationally expensive. A stochastic stability index (SSI) is proposed for the power system stability evaluation based on the theory of stochastic stability and energy function, specifically the stochastic derivative of the relative well-defined energy function and the critical energy. The SSI is implemented on the modified nine-bus system including wind turbines under different conditions. A doubly-fed induction generator (DFIG) wind turbine is characterized and modeled using measured wind data from several sites in Thailand. Each of the obtained wind power data is analyzed. The wind power effect is modeled considering the aggregated effect of wind turbines. With the proposed method, the system behavior is properly predicted and the stability is quantitatively evaluated with less computational effort compared with conventional numerical simulation methods.

Minimization of Active Power and Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power Systems under Unbalanced Grid Conditions

  • Park, Yonggyun;Han, Daesu;Suh, Yongsug;Choi, Wooyoung
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1032-1041
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power systems under unbalanced grid conditions. Three different control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions and torque pulsation. The control algorithm having a zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by the control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive powers. A combination of these two control algorithms depending on the operating requirements and the depth of the grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions leading to high performance DFIG wind turbine systems.

Protection relaying algorithm for DFIG using a DQ equivalent circuit (DQ 등가회로를 이용한 DFIG 보호계전방식)

  • Kang, Yong-Cheol;Lee, Ji-Hoon;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.23-24
    • /
    • 2007
  • Most of modern wind turbines employs a doubly-fed induction generator (DFIG) system because it has many advantages due to variable-speed operation, relatively high efficiency and it small converter size. The DFIG system uses a wound rotor induction machine so that the magnetizing current of the generator can be fed from both the stator and the rotor. This paper presents a protection relaying algorism for DFIG using the DQ equivalent circuits. The induced voltages calculated from the stator and rotor sides are nearly the same in the steady state. They become different in the DQ equivalent circuits during an internal fault. The proposed algorithm compares the inducted voltages estimated from the stator and the rotor circuit converted into the stationary reference frame. If the difference between the induced voltages exceeds the threshold, the proposed algorithm detects an turn-to-turn fault.

  • PDF

Implementation of Grid Connection of DFIG for Wind Power Generation System

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.143-145
    • /
    • 2006
  • This paper presents an overall control algorithm for a grid-connected wind-power generation system using a DFIG(doubly-fed induction generator) fed by back-to-back PWM converters. The control of DFIG is based on a stator-flux oriented vector control. The system enables not only fast and smooth synchronization but also high performance regulation of active and reactive power. Experimental results shows The feasibility of the control algorithm.

  • PDF

A Study on the CVCF Contorl of Wound Rotor Induction Gernerator by 2nd Exitation(III) (권선형 유도발전기의 CVCF 발전을 위한 2차 여자제어법에 관한 연구(III))

  • Ahn, Jin-Woo;Lee, Il-Chun;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.55-59
    • /
    • 1991
  • This paper deals with the control stratege for the constant voltage, constant frequency(CVCF) generation of doubly-fed induction generator. As an induction machine is a nonlinear and multivariable machine, so, the control system is needed a very sophiticated control processes to meet a CVCF condition. In this paper, control system is constructed and tested using the suggested exitation equation. The test results show that the suggested equation and control system are very useful strategy for the CVCF control of induction generator.

  • PDF

CCT Analysis of Power System Connected to DFIG Wind Turbine (DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2388-2392
    • /
    • 2013
  • Wind generation systems are very different in nature from conventional generation systems. Therefore it is necessary to research dynamic characteristics of wind generation systems connected to a power system. The stability analysis of wind turbine generator is an important issue in the operation of the power system. The result of angular stability of the power system that consists of only synchronous generators is different from that of the power system including wind turbine generators. This is due to the fact that generators connected to wind turbines are generally induction generators. The angular stability assessing synchronization of generators is determined by its corresponding critical clearing time(CCT). Wind turbine models for the analysis of power system are varied and difficult to use, but now these are standardized into four types. In this paper, the analysis of the CCT of the power system connected to wind farm considering the location and capacity is performed by using DFIG(Doubly-Fed induction Generator) wind turbine built-in type3 model in PSS/E-32.

Improved Grid Voltage Control Strategy for Wind Farms with DFIGs Connected to Distribution Networks

  • Zhang, Xueguang;Pan, Weiming;Liu, Yicheng;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.495-502
    • /
    • 2012
  • This paper presents an improved grid voltage control strategy for wind farms with doubly-fed induction generators (DFIGs) connected to distribution networks based on an analysis of the operation limits of DFIG systems. A modified reactive power limit calculation method in different operation states is proposed and a reactive power control strategy during grid voltage dips/rises is further discussed. A control strategy for compensating unbalanced grid voltage, based on DFIG systems, by injecting negative sequence current into the grid through the grid side converter (GSC) is proposed. In addition, the negative current limit of the GSC is discussed. The distribution principle of the negative sequence current among the different DFIG systems in a wind farm is also introduced. The validity of the proposed voltage control strategy is demonstrated by Matlab/Simulink simulations. It is shown that the stability of a wind farm and the power grid can be improved with the proposed strategy.