• 제목/요약/키워드: Double-tube heat exchanger

검색결과 65건 처리시간 0.024초

이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교 (Development of a Dynamic Model for Double-Effect LiBr-$H_2O$ Absorption Chillers and Comparison with Experimental Data.)

  • 신영기;서정아;조현욱;남상철;정진희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.109-114
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

  • PDF

이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교 (Development of a Dynamic Model for Double-Effect LiBr-$H_{2}O$ Absorption Chillers and Comparison with Experimental Data)

  • 신영기;서정아;조현욱;남상철;정진희
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.781-788
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

탄화수소계 냉동공조 시스템의 성능특성에 관한 실험 (Performance Characteristics of Refrigeration and Air Conditioning System Using Hydrocarbon Refrigerants)

  • 이호생;이근태;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.728-734
    • /
    • 2004
  • Environmentally friendly refrigerants with zero ozone layer depletion potential are required to be used in refrigerators and air conditioners due to the difficulties related to ozone layer depletion and global warming. A rigorous study for the system performance with new refrigerants having zero ozone layer depletion potential is inevitable before adopting that as a new fluid. The HFC(Hydrofluorocarbon) potential has been recommended as alternatives. In this paper. system performance in the heat pump facilities were studied using R-290, R-600a. R-1270 as an environment friendly refrigerant. R-22 as a HCFC's refrigerant. The experimental apparatus has been set-up as a conventional vapor compression type heat Pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70mm with 1.315mm wall thickness is used for this investigation. The test results showed that the COP of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of COP was found in R-1270. The refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. The compressor work was obtained with the maximum value in R-1270 and the minimum one in R-22.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석 (Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent)

  • 구재현;이재근
    • 자원리싸이클링
    • /
    • 제9권4호
    • /
    • pp.28-36
    • /
    • 2000
  • 본 연구는 입자가 혼합된 용제를 이중판형 열교환기 내에서 가열 및 증발과정을 통해 건조이자와 용제로 분리하여 회수하기 위한 연속식 순간 진공건조 시스템 해석에관한 것이다. 진공건조시스템은 용제 공급펌프, 이중관형 열교환기, 진공 스프레이 챔버 및 응축기로 구성된다. 연속적으로 공급되는 용제는 이중관형 열교환기 내에서 가열, 팽창 및 증발되며 관 출구부에서 팽창된 증기가 진공 스프레이 챔버 내로 분사되고 증기는 응축기로 수송되어 용제로 회수되고 입자는 관성력에 의해 증기로부터 분리되어 건조된다ㅣ. 안료입자가 함유된 벤젠 및 알킬벤젠의 분리 및 회수성능 실험을 수행한 결과, 습분양 1.1%로 건조된 안료입자를 94% 회수하였고, 99.9 wt%의 고순도 벤젠을 88% 회수하였다. 평균직경이 $6.5\mu\textrm{m}$인 안료입자를 진공건조시스템의 이중관형 열교환기에서 관출구부의 고속 분사에 의한 폭발적 분산력에 의해 입경이 14%감소된 $5.6\mu\textrm{m}$ 크기의 건조 안료입자를 회수하였다. 따라서 진공건조시스템은 용제에 함유된 입자를 건조 및 분리하여 미분제 제품으로 히수하는데 효율적이며 폐용제 정제용으로 적용이 가능하다.

  • PDF