• Title/Summary/Keyword: Double-tube heat exchanger

Search Result 65, Processing Time 0.036 seconds

The Inprovement of the Heat Exchanger Performance by Shape Modification(I)-Experimental Analysis of the Heat Transfer Enhancement by Attached Wires in a Double Pipe Heat Exchanger- (형상변화 에 의한 열교환기 의 열전달 성능 향상 (I) -이중 동심원관내에 와이어 부착시의 열전달 촉진에 대한 실험적 해석-)

  • 노승탁;이택식;강신형;김진오
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.71-80
    • /
    • 1985
  • The various sizes of wires are attached to the outside of the inner tube in a double pipe heat exchanger to enhance the thermal performance. The diameters of the wires range from 0.5mm to 1.6mm while the pitches are chosen between 5mm and 50mm. Experiments have been performed with the range of Reynolds numbers from 15000 to 30000 in annular space where air flows. The friction factors are increased by 1.5 to 4.5 times depending on the sizes and the pitches of the wires. However, the Nusselt numbers are increased by the factors of 1.8 to 2.8 within this experimental range. It is suggested that there should be an optimum configuration rendered when the weighting values of the heat transfer promotion and the pumping power are given.

Investigation of FIV Characteristics on a Coaxial Double-tube Structure (동심축 이중관 구조에서 유동기인진동 특성 고찰)

  • Song, Kee-Nam;Kim, Yong-Wan;Park, Sang-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1108-1118
    • /
    • 2009
  • A Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source of the order of $950^{\circ}C$ for nuclear hydrogen generation, which can produce hydrogen from water or natural gas. A primary hot gas duct (HGD) as a coaxial double-tube type cross vessel is a key component connecting a reactor pressure vessel and an intermediate heat exchanger in the VHTR. In this study, a structural sizing methodology for the primary HGD of the VHTR is suggested in order to modulate a flow-induced vibration (FIV). And as an example, a structural sizing of the horizontal HGD with a coaxial double-tube structure was carried out using the suggested method. These activities include a decision of the geometric dimensions, a selection of the material, and an evaluation of the strength of the coaxial double-tube type cross vessel components. Also in order to compare the FIV characteristics of the proposed design cases, a fluid-structure interaction (FSI) analysis was carried out using the ADINA code.

A Study on Beat Transfer Characteristics in the Air Side of Large-scaled Heat Exchanger (확대모형 열교환기를 이용한 공기측 열전달 성능에 관한 연구)

  • Byun Ju-Suk;Lee Jinho;Hong Man-Gi;Jeon Chang-Duk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1032-1041
    • /
    • 2005
  • This study is performed to investigate the heat transfer characteristics of heat exchanger according to the arrangement of fins as well as fin configuration by using the four times enlarged model. Friction factor, Colburn j factor and goodness factors are compared to each other to estimate performance of each case for 4 different kinds of fins, which are plain, single side slit, double side slit and louver fin. Results show that heat transfer would be altered by fin arrangement and that friction loss is more affected by fin configurations than by the fin arrangements. In particular, heat transfer depends more on the shape of front row than that of rear row. The heat transfer rate of combined fin arrangement increases a lot more under the same pressure drop than that of conventional fin arrangement. This indicates that the heat exchanger of higher efficiency would be designed by the proper combination of fins, of different shapes.

A Fundamentals Study on Heat Exchanger using Deep Ocean Water: Effects of Material on Heat Transfer Performance (심층수 이용 열교환기 개발을 위한 기초연구: 열교환기 재질이 열교환기 성능에 미치는 영향)

  • Kwon, Jeong-Tae;Lee, Chang-Kyung;Huh, Cheol;Cho, Meang-Ik;Kim, Ki-Young;Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4658-4664
    • /
    • 2013
  • This paper presents the effects of the tube materials on the heat transfer performance of double-tube heat exchangers for the development of heat exchangers using deep sea water. Heat exchangers made of titanium, aluminum. stainless steel, iron, copper, and aluminum with carbon black 0.015mm and 0.15mm coating were tested. Also, the heat transfer rate of each heat exchanger was calculated by using EES program. The calculated values were compared with the experimental ones, and the deviations were less than 10%. From the above experiment and analysis, aluminum with carbon black 15 coating can be considered the most promising candidate for the replacement of titanium heat exchanger.

A Fundamentals study on Heat Exchanger using Deep Ocean Water: Effects of Corrosion on Heat Transfer Performance (심층수 이용 열교환기 개발을 위한 기초연구: 열교환기 부식이 열교환기 성능에 미치는 영향)

  • Kwon, Young-Chul;Lee, Seok-Hyun;Huh, Cheol;Cho, Meang-Ik;Lee, Chang-Kyung;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5377-5384
    • /
    • 2013
  • This paper presents the effects of the tube materials and corrosion on the heat transfer performance of double-tube heat exchangers for the development of heat exchangers using deep sea water. Heat exchangers made of titanium, aluminum. stainless steel, iron, copper, and aluminum with electro-deposition coatings(Carbon black_$15{\mu}m$, Carbon black_$150{\mu}m$) were tested. Also, the heat transfer rate of each heat exchanger was calculated by using EES program. For the acceleration of corrosion by sea water, the temperature of sea water $70^{\circ}C$ and the concentration of salt 3.5% were considered. And the specimens were immersed in sea water during 6 weeks. From the above experiment and analysis, aluminum with electro-deposition coating(Carbon black_$150{\mu}m$) can be considered the most promising candidate for the replacement of titanium heat exchanger.

Condensing Heat Transfer of Natural Refrigerants with Nanoparticles in Enhanced Tube (나노입자를 포함한 자연냉매의 마이크로 휜관 응축 열전달 특성)

  • Lee, H.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.19-25
    • /
    • 2008
  • This paper deals with the heat transfer and pressure drop characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for condensing. The test section is a horizontal double pipe heat exchanger. Condensing heat transfer and pressure drop measurements were Peformed for 12.70 mm micro-fin tube and compared with the results in smooth tube. The local condensing heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-600a. The average condensing heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Hydrocarbon refrigerants have a higher pressure drop than that of R-22 with respect to refrigerant qualify and mass flux. Also, the condensing heat transfer coefficient and pressure drop of working fluids in smooth and micro-fin tube were compared. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 2.2 to 2.6 in all experimental conditions.

  • PDF

Verification Experiment of a Water-to-air Ground Source Multi-heat Pump System (물-공기 지열 멀티형 열펌프 시스템 실증연구)

  • Kim, Cheol-Woo;Kim, Byoung-Kook;Lee, Pyeong-Gang;Lim, Hyo-Jae;Kang, Shin-Hyung;Choi, Jong-Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • The aim of this study is to verify the performance of water-to-air multi-heat pump system with a vertical U-tube GLHX(U-tube system) and a double tube GLHX(double tube system), which were installed in a school building located in Asan. For analyzing the performance of the GSHP system, we monitored various operating da~ including the water temperature of inlet and outlet of the ground heat exchanger, mass flow rate, and power consumption. Daily average COP of the single U-tube system and the double tube system were 4.5 and 4.2 at cooling mode and were 3.5 and 3.8 at heating mode. As a result, We know that performance of water-to-air multi-heat pump unit is reliable at actual condition operated in a part load conditions for all day.

Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System (아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 특성 분석)

  • Lee, Dong-Won;Lee, Soon-Myung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.111-115
    • /
    • 2006
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and Ice fraction of ice slurry were varied from 800 to $3,500 kg/m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. During the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

  • PDF

A Study of The Effect of Corrosion on Heat Transfer in a Heat Exchanger (열교환기에서 부식이 열전달에 미치는 영향에 관한 연구)

  • Kwon, Hyun-Min;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.227-232
    • /
    • 2019
  • Heat pump systems based on ocean thermal energy conversion (OTEC) systems use the temperature difference between deep ocean water and surface ocean water to operate. However, they may have heat transfer degradation due to corrosion on the heat exchanger surface due to the salinity of sea water. This study presents experimental results for the heat transfer decrease of corroded metal tubes with respect to corrosion time. In order to replace high-priced titanium, electro-deposition (ED) coating was performed on aluminum tubes. Aluminum tubes with ED coating thicknesses of 10, 15, and $20{\mu}m$ were tested for double-tube heat exchangers after performing accelerated corrosion for 6, 12, and 18 weeks. The effects of the coating thickness and the corrosion time on the heat transfer degradation were investigated. From the results, the aluminum tube with an ED coating of $20{\mu}m$ thickness can be suggested as a candidate for replacing titanium tubes.

A SIMPLIFIED METHOD TO PREDICT FRETTING-WEAR DAMAGE IN DOUBLE $90^{\circ}$ U-BEND TUBES

  • Choi, Seog-Nam;Yoon, Ki-Seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.616-621
    • /
    • 2003
  • Fluid-elastic instability is believed to be a cause of the large-amplitude vibration and resulting rapid wear of heat exchanger tubes when the flow velocity exceeds a critical value. For sub-critical flow velocities, the random turbulence excitation is the main mechanism to be considered in predicting the long-term wear of steam generator tubes. Since flow-induced interactions of the tubes with tube supports in the sub-critical flow velocity can cause a localized tube wear, tube movement in the clearance between the tube and tube support as well as the normal contact force on the tubes by fluid should be maintained as low as possible. A simplified method is used for predicting fretting-wear damage of the double $90^{\circ}$U-bend tubes. The approach employed is based on the straight single-span tube analytical model proposed by Connors, the linear structural dynamic theory of Appendix N-1300 to ASME Section III and the Archard's equation for adhesive wear. Results from the presented method show a similar trend compared with the field data. This method can be utilized to predict the fretting-wear of the double $90^{\circ}$U-bend tubes in steam generators.

  • PDF