• Title/Summary/Keyword: Double-crack

Search Result 212, Processing Time 0.025 seconds

Seismic behavior of stiffened concrete-filled double-skin tubular columns

  • Shekastehband, B.;Mohammadbagheri, S.;Taromi, A.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.577-598
    • /
    • 2018
  • The imperfect steel-concrete interface bonding is an important deficiency of the concrete-filled double skin tubular (CFDST) columns that led to separating concrete and steel surfaces under lateral loads and triggering buckling failure of the columns. To improve this issue, it is proposed in this study to use longitudinal and transverse steel stiffeners in CFDST columns. CFDST columns with different patterns of stiffeners embedded in the interior or exterior surfaces of the inner or outer tubes were analyzed under constant axial force and reversed cyclic loading. In the finite element modeling, the confinement effects of both inner and outer tubes on the compressive strength of concrete as well as the effect of discrete crack for concrete fracture were incorporated which give a realistic prediction of the seismic behavior of CFDST columns. Lateral strength, stiffness, ductility and energy absorption are evaluated based on the hysteresis loops. The results indicated that the stiffeners had determinant role on improving pinching behavior resulting from the outer tube's local buckling and opening/closing of the major tensile crack of concrete. The lateral strength, initial stiffness and energy absorption capacity of longitudinally stiffened columns with fixed-free end condition were increased by as much as 17%, 20% and 70%, respectively. The energy dissipation was accentuated up to 107% for fixed-guided end condition. The use of transverse stiffeners at the base of columns increased energy dissipation up to 35%. Axial load ratio, hollow ratio and concrete strength affecting the initial stiffness and lateral strength, had negligible effect of the energy dissipation of the columns. It was also found that the longitudinal stiffeners and transverse stiffeners have, respectively, negative and positive effects on ductility of CFDST columns. The conclusions, drawn from this study, can in turn, lead to the suggestion of some guidelines for the design of CFDST columns.

Characteristics of Free-Standing GaN Substrates grown by Hydride Vapor Phase Epitaxy (Hydride Vapor Phase Epitaxy 법으로 성장된 Free-Standing GaN 기판의 특성에 관한 연구)

  • Kim, Hwa-Mok;Choe, Jun-Seong;O, Jae-Eung;Yu, Tae-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.3
    • /
    • pp.14-19
    • /
    • 2000
  • Free-standing GaN single crystal substrates have been obtained by growing thick GaN epitaxial layers on (0001) sapphire substrates using hydride vapor phase epitaxy (HVPE) method. After growing the GaN thick film of 200 ${\mu}{\textrm}{m}$, a free-standing GaN with a size of 10 mm $\times$10 mm were obtained by mechanical polishing process to remove sapphire substrate. Crack-free GaN substrates have been obtained by GaCl pre-treatment prior to the growth of GaN epitaxial layers. Properties of free-standing GaN substrates have been compared with those of lateral epitaxial overgrowth (LEO) GaN films by double-crystal x-ray diffraction (DC-XRD), cathodoluminescence (CL) and photoluminescence (PL) measurements.

  • PDF

The Failure Analysis of Double Pipe for Insulation Used Power Plant by Grooving Corrosion (발전소용 이중보온용 강관의 홈부식(Grooving Corrosion)에 의한 파손 분석)

  • Ham, Jong-Oh;Park, Ki-Duck;Park, Sung-Jin;Sun, Il-Sik
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.197-206
    • /
    • 2015
  • Failure analysis of pre-insulated pipe (SPPS 380, 400A) transporting high temperature water ($95{\sim}110^{\circ}C$) for a plant was carried out. The damaged area (${\Phi}5mm$) of pre-insulated pipe was found only on welds. The chemical composition of damaged pipe meets specification of carbon steel pipes for pressure service (KS D 3562). As results of microstructure analysis, crack propagated from outer to inside after pitting corrosion occurred on the outside surface. The non-metallic inclusion existed on the end of crack. And the non-metallic inclusion continuously and linearly formed along with the bond line of welds. Based on SEM-EDS analysis, the nonmetallic inclusions have higher Manganese (Mn) and Oxygen (O) content but sulfur (S) was not detected. As results of water quality analysis, hydrogen ion concentration and minerals like Fe, Mg, Si were in low level. But the content of dissolved oxygen (11.2 ppm) was slightly higher than that of standard. It seems that the cause of damaged pipe is grooving corrosion due to MnO inclusion formed on bond line and corrosion took place nearby welds.

Comparison of the Friction-Loss Coefficient for the Gap of Two Contact Surfaces and a Crack (접촉한 두 평면과 균열한 틈새에서의 유동마찰계수 비교)

  • Nam, Ho-Yun;Choi, Byoung-Hae;Kim, Jong-Bum;Lee, Young-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1075-1081
    • /
    • 2011
  • A leak-detection method has been developed by measuring the pressure variation between the inner and outer heattransfer tubes of a double-wall tube steam generator. An experiment was carried out to measure the leak rate in the gap between two surfaces pressed with a hydraulic press in order to simulate the phenomena, and a correlation was determined for the leak rate in a micro gap. However, in the correlation, the gap width and friction coefficient were coupled with the surface roughness, which affects the two parameters. The two parameters were separated using a surface-contact model to develop a correlation for the friction coefficient. The correlation was compared with the existing correlations used for crack analysis. Although the applied ranges of Reynolds numbers were different, the developed correlation for Reynolds numbers of 0.1.0.35 showed similar tendencies to existing correlations used for higher Reynolds numbers.

A Study on Applicability of Smartphone Camera and Lens for Concrete Crack Measurement Using Image Processing Techniques (이미지 처리기법을 이용한 균열 측정시 스마트폰 카메라 및 렌즈 적용성에 대한 연구)

  • Seo, Seunghwan;Kim, Dong-Hyun;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.63-71
    • /
    • 2021
  • Recently, high-resolution cameras in smartphones enable measurement of minute objects such as cracks in concrete using image processing techniques. The technology to investigate the crack width using an application at an adjacent distance of the close shot range has already been implemented, but the use is limited, so it is necessary to verify the usability of the high-resolution smartphone camera to measure cracks at a longer distance. This study focuses on recognizing the size of subdivided crack widths at a thickness within 1.0 mm of crack width at a distance of 2 m. In recent Android-based smartphones, an experiment was conducted focusing on the relationship between the unit pixel size, which is a measurement component, and the shooting distance, depending on the camera resolution. As a result, it was possible to confirm the necessity of a smartphone lens for the classification and quantification of microcrack widths of 0.3 mm to 1mm. The universal telecentric lens for smartphones needed to be installed in an accurate position to minimize the effect of distortion. In addition, as a result of applying a 64 MP high-resolution smartphone camera and double magnification lens, the crack width could be calculated within 2 m in pixel units, and crack widths of 0.3, 0.5, and 1mm could be distinguished.

A study on the optimization of manufacturing processes of double wall bellows for dual fuel engine II - Optimization of welding process - (Dual Fuel 엔진용 이중관 벨로우즈 제작 공정의 최적화에 관한 연구 II - 용접공정의 최적화 -)

  • Kim, Pyung-Su;Kim, Jong-Do;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.504-509
    • /
    • 2016
  • Production processes of double wall bellows can be roughly categorized into two steps. In the first step, inner and outer bellows are made of STS316L in austenite stainless steel due to their excellent formability and corrosion resistance. In the second step, the double wall bellows are manufactured using the welding method with both the inner and outer bellows. The microstructure and defects of each weldment are observed to ensure the reliability of bellows since weldment is a highly vulnerable part, which can crack and fracture when bellows are formed or used. In this study, optimum welding conditions were derived from the analysis of microstructure and inspection of weldment of bellows that were produced using various welding procedure. Moreover, the mechanical properties were evaluated through hardness measurement of substrate, weldment and the heat-affected zone.

The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material (보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響)

  • 오세욱;박인석;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 1989
  • In order to investigate the effects of hot corrosion on the creep rupture properties and creep life of 304 stainless steel being used as tube materials of heavy oil fired boiler, the creep rupture tests were carried out at temperature 630.deg.C, 690.deg.C and 750.deg.C in static air for the specimens with or without coating of double layer corrosives according to the new hot corrosion test method simulating the situation commonly observed on superheater tubes of the actual boiler. The double layer corrosives are 85% V$_{2}$O$_{5}$ + 10% Na$_{2}$So$_{4}$ + 5% Fe$_{2}$O$_{3}$ as the inner layer corrosive being once melted at 900.deg. C and crushed to powder, and 10% V$_{2}$O$_{5}$ + 85% Na$_{2}$SO$_{4}$ +5% Fe$_{2}$O$_{3}$ as the outer layer corrosive. As results, in the specimen coated with the double layer corrosives, the rupture strength was extremely lowered and showed a large difference each other. The rupture ductility also lowered remarkably as a result of the brittle fracture mode due to hot corrosion. These results indicate that hot corrosion could essentially alter the creep fracture mechanism. From the metallographic observation, it was clarified that the rupture life of 304 stainless steel subjected to hot corrosion was chiefly determined by the behavior of the aggressive intergranular penetration of sulfides.des.

A Case Study on Field Construction of Cold Weather Mass Concreting Using Double Bubble Sheets and Hydration Heat Difference Method (이중 버블시트 및 수화발열량차 공법에 의한 한중매스콘크리트의 현장적용 연구)

  • Kim Jong;Yoon Jae-Ryung;Jeon Chung-Keun;Shin Dong-An;Oh Seon-Gyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.15-18
    • /
    • 2006
  • The test result of mat concrete applying both hydration heat difference and insulation curing method on new construction of Cheongju university educational building are summarized as following. Both fresh concrete and compressive strength properties were satisfied In aimed value. Setting time of concrete incorporating 15% of fly ash(FA) retarded 1.2 hour than control concrete. Temperature history of mali concrete indicated that the highest temperature of center was exhibited at $126^{\circ}C$ after 51 hours while the highest temperature of upper section was $10.6^{\circ}C$ after 46 hours. Temperature Difference between center and surface was managed at less than $6^{\circ}C$ during whole curing period. In addition the temperature of upper section secured more than $3.3^{\circ}C$ while the temperature of outside was indicated at less than $-10^{\circ}C$. Maturity by parts of construction secured more than $30^{\circ}C$ DD higher than outside at 3 days. The more number of times, applying insulation curing method by double bubble sheets, increased, the higher economic effect was secured. Overall it was clear that applying both double bubble sheets and hydration heat difference method on this new construction can resist hydration heat crack, early frost demage and strength decrease. It also significantly contributed quality improvement of cold weather concreting

  • PDF

Study on the Effects of Surface Treatment and Stitching on the Fracture Behavior of Composite Laminates (계면처리와 스타칭이 복합적층판의 파괴거동에 미치는 영향 연구)

  • Hong, S.Y;Hwang, W;Park, H.C;Han, K.S
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.806-815
    • /
    • 1996
  • The interlaminar fracture behavior of woven laminates under static and cyclic loadings has been studied using DCB(double cantilever beam) specimens. The effects of surface treatment and stiching on the fracture behavior of composite laminates are investigated experimentally. Fracture toughness has been improved by surface treatment because the surface treatment can change the fracture mechanism of laminates. SCB(stitched cantilever beam) model has been proposed to quantify the effect of through-thickness resinforcement(stiching) in improving the delamination crack growth resistance. Distributed loads which are transfered to through-thickness fibers can be calculated by the SCB model. And fracture energy increase due to the distributed load can be predicted by a power function of the distributed load. A new parameter agreed well proposed predict fatigue crack growth rate. The predictions using this parameter agreed well with the experimental data.

Development of Inpipe Inspection Robot System (배관 검사 로봇 시스템 개발)

  • Baek, Sang-Hun;Ryu, Seong-Mu;No, Se-Gon;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2030-2039
    • /
    • 2001
  • Recently, various inpipe inspection robots are developed and its effective values are increased in industrial use. However, it is so difficult to make a inpipe inspection robot system which has flexible mobility and accuracy of inspection in pipelines. Especially, it is very important to know the exact crack position. In this paper, we are to present a lately developed inpipe inspection robot system which can resolve the above Problems. The robot is configured as an articulated structure like a snake. Two active driving vehicles are located in front and rear of the inspection robot respectively and passive modules such as a nondestructive testing module and a control module are chained between the active vehicles. Special feature of the robot system is a ground interface, which is able to show informations of robot and pipelines. By using this, so called virtual map in this paper, user is able to know the pipelines'feature and crack position.