• Title/Summary/Keyword: Double-Cantilever Beam

Search Result 120, Processing Time 0.157 seconds

DETECTION OF INTERFACIAL CRACK LENGTH BY USING ULTRASONIC ATTENUATION COEFFICIENTS ON ADHESIVELY BONDED JOINTS

  • Chung, N.Y.;Park, S.I.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.303-309
    • /
    • 2004
  • In this paper, an interfacial crack length has been detected by using the ultrasonic attenuation coefficient on the adhesively bonded double-cantilever beam (DCB) joints. The correlations between energy release rates which were investigated by experimental measurement, the boundary element method (BEM) and Ripling's equation are compared with each other. The experimental results show that the interfacial crack length for the ultrasonic attenuation coefficient and energy release rate increases proportionally. From the experimental results, we propose a method to detect the interfacial crack length by using the ultrasonic attenuation coefficient and discuss it.

Analysis of Bridging Stress Effect of Polycrystalline aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석)

  • 손기선;이선학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.583-589
    • /
    • 1996
  • In this study a new analytical model which can describe the relationship between the bridging stress and microstructure has beenproposed in order to investigate the microstructural effect on the R-curve behavior in polycrystalline aluminas since the R-curve can be derived via the bridging stress function. In the currently developed model function the distribution of grain size is considered as a microstructural factor in modeling of bridging stress function and thus the bridging stress function including three constants PM, n, and Cx, can be established analytically and quantitatively. The results indicate that the n value is closely related to the grain size distribution thereby providing a reliability of the current model for the bridging stress analysis. Thus this model which explains the correlation of the bridging stress distribution and microstructual parame-ters is useful for the systematic interpretation of microfracture mechanism including the R-curve behavior in polycrystalline aluminas.

  • PDF

Measurement of Crack Length by Ultrasonic Attenuation Coefficient (초음파 감쇠계수에 의한 균열길이의 측정)

  • Chung, Nam-Yong;Park, Sung-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.340-345
    • /
    • 2003
  • In this paper, the ultrasonic attenuation coefficient was measured by variation of crack length for double-cantilever beam(DCB) specimen. The energy release rate, G, was obtained by the experimental measurement of compliance. The experimental results represents that the relation between crack length for the ultrasonic attenuation coefficient and energy release rate is increased proportionally. From the results of experiments, the measurement method of crack length by the ultrasonic attenuation coefficient was proposed and discussed.

  • PDF

Detection of Interface Crack Using Ultrasonic Method in Adhesively Bonded Joints (초음파 탐상법을 이용한 접착이음에 대한 계면 균열의 검출)

  • Jeong, Nam-Yong;Park, Seong-Il;Lee, Myeong-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.415-423
    • /
    • 2001
  • In is well recognized that the ultrasonic method is one of the most common and reliable nondestructive testing(NDT) methods for the quantitative estimation of defects in welded structures. However, NDT techniques applying for adhesively bonded joints have not been clearly established yet. In this paper, the detection of interface crack by the ultrasonic method was applied for the measurement of interface crack length in the adhesively bonded joints of double-cantilever beam(DCB). The optimum condition of transmission coefficients and experimental accuracy by the ultrasonic method in the adhesively bonded joints have been investigated. The experimental values are in good agreement with the computed results by boundary element method(BEM) and Riplings equation.

Evaluation of Fracture Toughness by Energy Release Rate for Interface Crack in Adhesively Bonded Joints (에너지 방출률에 의한 접착이음의 계면균열에 대한 파괴인성의 평가)

  • Jeong, Nam-Yong;Lee, Myeong-Dae;Gang, Sam-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2174-2183
    • /
    • 2000
  • In this paper, the evaluation method of interfacial fracture toughness to apply the fracture toughness was investigated in adhesively bonded joints of AI/Ced./A1. Four types of adhesively bonded double-cantilever beam(DCB) joints with the interface crack were prepared for the test of interfacial fracture toughness. The experiments to measure the interfacial fracture toughness were performed under the various mixed-mode conditions. The critical energy release rate, Gc, was obtained by the experimental measurement of compliances. From the experimental results, the interfacial fracture toughness for the mixed-mode specimens is well characterized by the energy release rate, and the method of strength evaluation by the interfacial fracture toughness was discussed in adhesively bonded joints.

Detection of Interface Crack Using Ultrasonic Method in Adhesively Bonded Joints (초음파 탐상법을 이용한 접착이음에 대한 계면균열의 검출)

  • Chung, Nam-Yong;Lee, Myung-Dae;Park, Sung-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.97-102
    • /
    • 2000
  • It is well recognized that the ultrasonic methods is one of the most common and reliable nondestructive testing(NDT) methods for the quantitative estimation of defects in welded structures. However, NDT techniques applying for adhesively bonded joints have not been clearly established yet. In this paper, the detection of interface crack by the ultrasonic method was applied for the measurement of interfacial crack length in the adhesively bonded joints of double-cantilever beam(DCB). The optimum condition of transmission coefficients in the adhesively bonded joints and it's experimental accuracy by the ultrasonic method have been investigated. The experimental values are in good agreement with the computed results by boundary element method(BEM) and Ripling's equation.

  • PDF

Measurement of Crack Length by Ultrasonic Attenuation Coefficients on Interfaces of Al/Epoxy Bonded Dissimilar Materials (Al/Epoxy 이종재 접합 계면의 초음파 감쇠계수에 의한 균열길이의 측정)

  • Park, Sung-Il;Chung, Nam-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1109-1114
    • /
    • 2003
  • The initial crack often occurs on the bonded interface and it is the general cause of the interface fracture. It is very significant to establish the measurement method of interfacial crack by applying the ultrasonic technology into the interface of bonded dissimilar materials. In this paper, the interfacial crack length was measured by ultrasonic attenuation coefficient in the Al/Epoxy bonded dissimilar materials of double-cantilever beam(DCB). The energy release rate, G, was obtained by the experimental and Ripling's equation measurement of compliance. The experimental results represent that the relation between interfacial crack length for the ultrasonic attenuation coefficient and energy release rate is increased proportionally. From the experimental results, a measurement method of the interfacial crack length by the ultrasonic attenuation coefficient was proposed and discussed.

  • PDF

Measurement of Interfacial Crack Length by Ultrasonic Attenuation Coefficients on Adhesively Bonded Components (접착부재의 초음파 감쇠계수에 의한 계면균열 길이의 측정)

  • 정남용;박성일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.130-137
    • /
    • 2004
  • The ultrasonic attenuation coefficients were measured by interfacial crack length in the adhesive components of double-cantilever beam(DCB). The energy release rate, G, was obtained by the experimental measurement of compliance. The numerical analysis by the boundary element method(BEM) and Ripling's equation was investigated. The experimental results represent that the relation between interfacial crack length for the ultrasonic attenuation coefficient and energy release rate is increased proportionally. A measurement method of the interfacial crack length by the ultrasonic attenuation coefficient was proposed and discussed.

Measurement of Crack Length by Ultrasonic Attenuation Coefficient (초음파 감쇠계수에 의한 균열길이의 측정)

  • Chung, Nam-Yong;Park, Sung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.386-393
    • /
    • 2004
  • In this paper, the ultrasonic attenuation coefficient was measured by variation of crack length for double-cantilever beam(DCB) specimen. The energy release rate, G, was obtained by the experimental measurement of compliance. The experimental results represents that the crack length for the ultrasonic attenuation coefficient and energy release rate is increases proportionally From the experimental results, we proposed a detecting method of the crack length by the ultrasonic attenuation coefficient and discussed it.

Experiment and Analysis on Impact of Tapered Double Cantilever Beam with Aluminum Alloy (알루미늄 합금으로 된 경사진 이중외팔보의 충돌에 대한 실험 및 해석)

  • Gao, Teng;Cho, J.U.;Cheon, Seong S.
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.72-76
    • /
    • 2014
  • This study is investigated by experiments and analyses at rates of 2.5m/s, 7.5m/s and 12.5m/s on the impact of tapered double cantilever beam specimens with aluminium alloy. It aims to examine the mechanical property of aluminum alloy by evaluating energy release rate and equivalent stress happened at the bonded part of specimen. Because bonding force remains after the separation of specimen, the energy release rate at the bonded part becomes highest. As crack propagates and the high stress happens at the end of the bonded part, the maximum equivalent stress becomes higher at the last stage, regardless of impact rate. These results of experiments and analyses are the data necessary to develop the safe design of composite material to prevent crack propagation due to impact.