• Title/Summary/Keyword: Double slope

Search Result 106, Processing Time 0.026 seconds

Three-dimensional finite element analysis of stress distribution for different implant thread slope and implant angulation (임플란트 나사선 경사각과 식립 각도에 따른 3차원 유한요소 응력분석)

  • Seo, Young-Hun;Lim, Hyun-Pil;Yun, Kwi-Dug;Yoon, Suk-Ja;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Purpose: The purpose of this study was to find an inclination slope of the screw thread that is favorable in distributing the stresses to alveolar bone by using three dimensional finite element analysis. Materials and methods: Three types modelling changed implant thread with fixed pitch of 0.8 mm is the single thread implant with $3.8^{\circ}$ inclination, double thread implant with $7.7^{\circ}$ inclination and the triple thread implant with $11.5^{\circ}$ inclination. And three types implant angulation is the $0^{\circ}$, $10^{\circ}$ and $15^{\circ}$ on alveolar bone. The 9 modelling fabricated for three dimensional finite element analysis that restored prosthesis crown. The crown center applied on 200 N vertical load and $15^{\circ}$ tilting load. Results: 1. The more tilting of implant angulation, the more Von-Mises stress and Max principal stress is increasing. 2. Von-Mises stress and Max principal stress is increasing when applied $15^{\circ}$ tilting load than vertical load on the bone. 3. When the number of thread increased, the amount of Von-Mises stress, Max principal stress was reduced since the generated stress was effectively distributed. 4. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants. When comparing the magnitude of the maximum principal stress, the triple thread implant had a least amount of stress. This shows that the triple thread implant gave a best result. Conclusion: A triple thread implant to increase in the thread slope inclination and number of thread is more effective on the distribution of stress than the single and double thread implants especially, implant angulation is more tilting than $10^{\circ}$ on alveolar bone. Thus, effective combination of thread number and thread slope inclination can help prolonging the longevity of implant.

A Numerical Study on Performance Improvement of Canopy Hood in Melting Process (용해공정의 캐노피 후드 성능 개선에 관한 수치 해석적 연구)

  • Jung, Yu-Jin;Shon, Byung-Hyun;Lee, Sang-Man;Jung, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1519-1526
    • /
    • 2013
  • This study reviewed the capturing performance of a canopy hood used in some melting processes of a casting manufacturing factory through a site survey. In addition, this study compared and evaluated the flow field and pressure field for the plans to enhance the hazardous air pollutants collection capacity by using CFD model. The case-2(flange attached + double hood) can be improved in terms of collection performance, but is expected to increase in hood static pressure by about 70% more than the existing structure, so it was shown that its site applicability is not good. It is judged that the shape of case-3(flange attached + double cone attached) is most suitable to improve the suction efficiency. This is because a double cone is installed at the center of the opening to concentrate the flow rate on the edge of the hood and control the hume rising to the center of the hood without a static pressure rise via the slope of the cone.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

Calibration transfer between miniature NIR spectrometers used in the assessment of intact peach and melon soluble solids content

  • Greensill, Colin.V.;Walsh, Kerry.B.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1127-1127
    • /
    • 2001
  • The transfer of predictive models using various chemometric techniques has been reported for FTNIR and scanning-grating based NIR instruments with respect relatively dry samples (<10% water). Some of the currently used transfer techniques include slope and bias correction (SBC), direct standardization (DS), piecewise direct standardization (PDS), orthogonal signal correction (OSC), finite impulse transform (FIR) and wavelet transform (WT) and application of neural networks. In a previous study (Greensill et at., 2001) on calibration transfer for wet samples (intact melons) across silicon diode array instrumentation, we reported on the performance of various techniques (SBC, DS, PDS, double window PDS (DWPDS), OSC, FIR, WT, a simple photometric response correction and wavelength interpolative method and a model updating method) in terms of RMSEP and Fearns criterion for comparison of RMSEP. In the current study, we compare these melon transfer results to a similar study employing pairs of spectrometers for non-invasive prediction of soluble solid content of peaches.

  • PDF

NUMERICAL STUDY OF PROPELLER AND HIGH LIFT DEVICE AERODYNAMIC INTERFERENCES (프로펠러와 고양력 장치와의 공력간섭에 대한 수치해석 연구)

  • Park, Y.M.;Kim, C.W.;Chung, J.D.;Lee, H.C.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.47-54
    • /
    • 2011
  • A rotating propeller of turboprop aircraft gives much effect on the aerodynamic characteristics of wing such as lift, moment and stall. Specially propeller effect on the wing surface is much more dominant when aircrafts are in landing or take-off conditions. In the present paper, three dimensional Navier-Stokes simulations for the interaction of propeller and wing were carried out for medium sized turboprop aircraft. For rotating propeller, unsteady sliding mesh method was used to simulate a relative motion between moving and static bodies. For the power effect analysis in landing and take off configurations, double slotted flap was also considered and the aerodynamic characteristics were investigated. It was shown that the propeller slipstream enhanced the lift slope including maximum lift by eliminating local flow separation region and this enhancement was more dominant with high lift device.

Review of energy saving system for DC Electric Railway (DC전철구간에서의 에너지 절약시스템에 대한 고찰)

  • Kim Yong-Ki;Yoon Hee-Taek;Mok Jai-Kyun;Chang SeKy
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.290-295
    • /
    • 2004
  • Electrification of existing railroad as well as extension of double track, need a large amount of electric energy. Especially, increase in energy consumption of high cost causes much problems in domestic economy. It is neccessary to save energy for the crisis of exhaust of fossil energy. About $20{\~}25\%$ of regenerated energy of an electric railcar is lost on down slope run or on braking. In order to save energy in electric railway system, Therefor, application of energy regeneration system is proposed and introduced in the present paper.

  • PDF

A Review on Field Constraints for Railway Conflict Detection and Resolution Problem; focusing on the Korean Regional Railway System (열차경합 검지 및 해소 문제를 위한 현실제약의 고찰: 한국철도의 사례를 중심으로)

  • Oh Seog-Moon;Kim Jae-Hee;Hong Soon-Heum;Park Bum-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1374-1378
    • /
    • 2004
  • Railway conflict detection and resolution problem (RCDRP) involves complicated field constraints that should be considered for practical service. In this paper, we address those constraints in brief. Particularly, following situations are addressed; (1) temporal change of network topology, (2) consideration of diverse conditions of track and train, for example, single/double tracks and passenger/freight service, (3) siding capacity limitation, (4) bidirectional sides used by both inbound and outbound trains, (5) regulation for passenger transfer service, (6) consideration of siding length, (7) Restriction on stopping before the track segment with steep slope.

  • PDF

Numerical Simulation of Propeller Slipstream Effect on Wing Aerodynamic Characteristics (프로펠러 후류 효과로 인한 날개의 공력 특성 수치해석)

  • Park, Y.M.;Kim, C.W.;Chung, J.D.;Lee, H.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.202-205
    • /
    • 2011
  • A rotating propeller of turboprop aircraft gives much effect on the aerodynamic characteristics of wing such as lift, moment and stall. Specially, a rotating propeller changes the lift and moment characteristics when aircrafts are in landing or take-off condition. In the present paper, 3-dimensional Navier-Stokes simulations for the interaction of propeller and wing were carried out. For rotating propeller, unsteady sliding mesh method was used to simulate a relative motion. For the power effect analysis in landing and take off configurations, double slotted flap was also considered and the aerodynamic characteristics were investigated. It was shown that the propeller slipstream enhanced the lift slope including maximum lift and this enhancement was more dominant with high lift device.

  • PDF

A Study on the Highway Ramp Section for Simulation of Commercial Vehicle ESC Assesment (상용 ESC 평가 시뮬레이션을 위한 국내 고속도로 진출입로 연구)

  • Lee, Hongguk;Park, Joongyoung;Chang, Kyungjin;Suh, Leejung;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.23-28
    • /
    • 2014
  • Commercial vehicle ESC assessment for curvature road was conducted. The previous study of ESC activation condition for losing controllability utilizing the test protocols of double lane change and sine with dwell method was conducted without considering the geometric complexity of roadway design. Since critical rollover accidents were frequently observed in the exit ramp zone, variety of curve, slope and bank have been added for analysis conditions. Detailed feature of the ramp including location, dimension and design characteristics have been analyzed from the typical trumpet type ramp design. Analyzing accident data from 2008, two specific ramps have been selected due to their complexity in design and severity in steering operation.

Single Mode Laser Oscillation in an Nd-Doped Large Core Double Clad Fiber Cavity with Concatenated Adiabatic Tapers

  • Seo, Hong-Seok;Choi, Yong-Gyu;Kim, Kyung-Hon;Jeong, Hoon;Oh, Kyung-Hwan
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.255-258
    • /
    • 2002
  • We created a new design for an Nd-doped clad-pumped silica fiber laser to enhance the pump absorption and lasing efficiency for a butt-coupled, end-pumped scheme. Two concatenated adiabatic tapers formed within the laser cavity simultaneously removed higher order modes and were spliced to conventional single mode fibers. We theoretically analyzed mode propagation along the composite cavity and experimentally achieved continuous wave oscillation in the $LP_{01}$ mode at $1.06\;{\mu}m$ and a laser output power of over 820 mW with a slope efficiency of 27%.

  • PDF