• Title/Summary/Keyword: Double skin window

Search Result 25, Processing Time 0.039 seconds

Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition - (전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 -)

  • Park, Ji-Ho;Oh, Eun-Joo;Cho, Dong-Woo;Cho, Kyung-Joo;Yu, Jung-Yeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.

Performance Analysis of Summertime Heat Transfer Characteristics of the Double Skin Window for Plant Factory (식물공장 이중창호의 하절기 열전달 성능 분석)

  • So, Jae-Hyun;Kim, Woo-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.351-357
    • /
    • 2012
  • To reduce the summertime cooling load of a plant factory, a concept design was performed for the double skin window which utilizes the low temperature air from a ground coupled heat exchanger. The design parameters were selected as the number of cavity air inlet, the cavity thickness, the location of cavity air inlet, and the configuration of cavity air outlet. A parametric study was conducted in a systematic way to evaluate the heat transfer characteristics of the double skin window. As the number of cavity air inlet and the cavity thickness increase, the heat flux from outside air to indoor air was decreased. The effect of the location of cavity air inlet was not significant and the larger cavity air outlet area gave us relatively better heat blocking performance from outside hot air. This study demonstrated that it is possible to develop an improved double skin window by utilizing a ground coupled heat exchanger.

Study on the Evaluation of Regional Building Energy Efficiency Rating According to the Insulation Performance of Double Skin Window in Apartment Houses Expanded Balcony (발코니 확장형 공동주택의 이중외피 창호 열성능에 따른 지역별 건축물에너지 효율등급 평가)

  • Jang, Cheol-Yong;Ahn, Byung-Lip;Kim, Chi-Hoon;Hong, Won-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.32-37
    • /
    • 2010
  • In order to handle the crisis about energy-environment problem, it is necessary to develop the future-oriented and innovative energy technology in architecture area. So the development of new technology for energy saving and alternative energy use has been spurred in this area. Double skin window system, which is an active covering to respond to the exterior change of the environment, is the skill that can reduce the indoor cooling and heating load and the environmental architecture can be realized. This study works out U-value of windows using the window-simulation program with the development and study of the double skin. In addition, the effect of the double skin insulation on the efficiency rating has been analyzed, applying to the certification system of the building energy efficiency rating which has implemented.

A Study on Natural Ventilation Performance for a Double-Skin Facade System in Apartment Buildings (이중외피시스템을 적용한 고층 주거용건물의 자연환기 성능평가)

  • 석호태;김동화;최정민
    • Journal of the Korean housing association
    • /
    • v.14 no.3
    • /
    • pp.119-126
    • /
    • 2003
  • The purpose of this study is to evaluate the natural ventilation performance for variable external wind speed as a preliminary step to determining the seasonal operating modes of the Double-skin Facade System applied to apartment buildings. For this purpose, two simulation programs are used to compare the Double-Skin Facade System with the Double Sash Window. First, TAS is used to plan a schedule for natural ventilation during the intermediate season and to analyze the cooling loads. Second, CFD is used for a more detailed airflow analysis on a typical floor plan of the model building. The results of the simulations on natural ventilation performance show that the Double-Skin Facade System can reduce the cooling load by 10.5% compared to the Double Sash Window.

The Characteristics of the winter season window and indoor temperature due to the indoor plant (동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구)

  • Yun, Young-Il;Cho, Ju-Young
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.

A Study on Application of Shaft-box Type Double Skin to Apartment Building (공동주택에 대한 Shaft Box형 이중외피의 적용에 관한 연구)

  • Roh, Ji Wooung
    • KIEAE Journal
    • /
    • v.13 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • The balcony of our apartment building consists of unique construction similar to double skin. It is announced broadly that double skin is very effective system in improvement of natural ventilation and indoor thermal environment, and outdoor sound protection. So, for the improvement of indoor climate and energy saving, many peoples studied about environmental performance of our balcony construction. This study focus on shaft box facade, special form of box window construction. It consists of a system of box window with continuous vertical shafts that extend over a number of stories to create a stack effect. Proto-type was decided by analyzing various types of exiting apartments. Shaft box type balcony was created by setting up shaft space at a part of balcony. Air flow and contribution of air temperature were simulated, performance of shaft box type balcony was compared with existing balcony. Finally, we confirmed that shaft box type balcony has many possibility for improvement of indoor environment.

A Study on the Energy Load of the Curtain Wall Buildings according to the Application of the Double-skin Facade System (커튼월 건축물의 이중외피 시스템 적용에 따른 에너지 부하량 검토)

  • Li, Bai-Hong;Lee, Jun-Gi;Kim, Sung-Hoon;Lee, Gab-Taek;Kim, Dong-Wan;Lee, Kyung-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.99-104
    • /
    • 2016
  • In this study, we researched the energy load according to the change of the inner window area ratio, the distance of the air gap and the azimuth of the curtain wall building, which installed the multistory double-skin facade(DSF). and we compared the results with the no double-skin facade situation as follows. With the DSF, it is better than other case, when the window area ratio is 40% and the air gap is 1.2m on the west, south-45-west, south-45-east and east. And it's best when the window area ratio is 40% and the air gap is 0.4m on the south. And on the east or south-45-east, the window area ratio is 40% and the air gap is 1.2m is better than other case with the DSF. On south, it is best when the window area ratio is 100% without DSF. On the south-45-west or west, it is best when the window area ratio is 40% without the DSF.

Full-scale Mock-up Measurement of a Double Glazed Window System Equipped with Sunlight Controls (광기능성 창호시스템의 동절기 채광특성에 관한 목업연구)

  • Kim, Gon
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.35-42
    • /
    • 2008
  • Besides genuine skin and clothes, it is called that building is third skin for us. That means the skin of buildings is the most important factor for our man-made environment. The issues in designing the building envelope include the insulation, infiltration, ventilation and bridging in windows. Getting light into the space safely and providing views to outdoor, additionally, are key things with the building envelope design. A deep-rooted preference for full view is still alive with large area of glass. Balcony expansion is legalized in apartment houses, which causes lots of environmental problems. Without balcony space, the adjacent space to unshaded window is exposed to the direct sun. A window can have many layers and the inner space can be utilized with an automatic blind system. Recently, the refurbished version of a double-glazed window system has been developed for the purpose of minimizing energy loss occurred around windows. For the better daylight control with equipped blind system, a set of adjustment technique of blind slats was tested in a mock-up building and recommended the detail operation. Not surprisingly, the optimized blind system can be oriented to enhance the uniformity in light distribution and direct glare from the sky as well..

Indoor Airflow of High-Rise Apartment with Different Types of Box-Windows (초고층 공동주택의 이중외피 창호 유형별 실내기류 특성 비교)

  • Choi, Tae-Hwoan;Jeon, Mi-Sook;Lee, Jung-Hyun;Kim, Tae-Yeon;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.993-998
    • /
    • 2006
  • High-rise apartments have a problem using natural ventilation because of the strong outdoor wind velocity. Conventional high-rise apartments have adopted mechanical ventilation systems to maintain the indoor air quality. However, it leads to the overuse of electricity and the sick house syndrome. Double-skin facade is the alternative for the high-rise building to use natural ventilation and this study is focused on the performance of the box-window, which is a kind of double-skin facades. Indoor wind velocity and HCHO concentrations are analyzed with three types of box-windows: the diagonal type, parallel type and perpendicular type. The airflow is simulated by computational fluid dynamics program. Box-windows reduce the maximum value of indoor wind velocity about 50% compared with the single window and the HCHO concentrations do not have the big difference. Box-windows could be the alternative to enhance the use of the natural ventilation and indoor air quality of the high-rise apartment.

  • PDF

Evaluation of Lighting Energy Saving Rate in a Small Office Space (소규모 사무공간의 조명에너지 절감율 평가에 관한 연구)

  • Kim, Han-Yong;Yun, Gyeong;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.50-58
    • /
    • 2012
  • The objective of this study is to evaluate the lighting dimming rates with various parameters of the building skin in a small office. We compared to simulated workplane illuminance and measured workplane illuminance for the base model. After that, the five veriables(the presence of vertical wall in double skin facade, the presence of windowsill, window to wall ratio(WWR), window visible transmittance, the width of double skin facade) were applied to base model, and we analyzed the simulated lighting energy saving rates. The results are listed as below. The simulated workplane illuminance results are similar to the measurement. Simulated illuminance was smaller than measured illuminance by 16.5%(60 lx). In accordance with applicable building skin parameters, lighting energy saving rate results are summarized as follows. Lighting energy saving rate of case1(windowsill height 0.7m) is higher than that of base case(windowsill and vertical wall) by 7.3% and the lighting energy saving rate of case2(no vertical wall) is higher than that of base case by 7.6% and the lighting energy saving rate of case3(no windowsill and vertical wall) is higher than that of base case by 12.4%. The lighting energy saving rate is increased by 2.3%, when window visible transmittance is increased from 70% to 86%. The lighting energy saving rate is increased by 4.6%, when we changed the WWR 70% to 90%. lighting energy savings rate is increased by 6.5%, when the width of double skin facade is reduced from 1m to 0.3m.