• Title/Summary/Keyword: Double shear test

Search Result 96, Processing Time 0.021 seconds

주기하중을 받는 세장한 이중강판합성벽의 비선형해석 (Nonlinear Analysis of Slender Double Skin Composite Walls Subjected to Cyclic Loading)

  • 엄태성;박홍근
    • 한국강구조학회 논문집
    • /
    • 제20권4호
    • /
    • pp.505-517
    • /
    • 2008
  • 휨지배 거동을 나타내는 세장한 이중강판합성벽의 비탄성 거동을 예측하기 위하여 비선형 수치해석 모델이 연구되었다. 수치해석의 편리를 위하여, 제안된 모델은 비교적 단순한 모델을 가지고 비탄성 거동을 근사적으로 예측할 수 있는 거시적 모델로 개발되었다. 휨지배 거동을 나타내는 벽체에 대해서는 다중평행요소 모델이 사용되었으며, 깊은 연결보의 전단거동을 위하여 X형 대각요소 모델이 사용되었다. 각 요소의 주기거동을 예측하기 위하여 콘크리트 및 강판 요소에 대한 간략화된 일축의 주기모델을 제안하였다. 제안된 해석모델은 1자형 및 T형 단일벽과 병렬벽에 적용하였으며, 그 결과는 기존의 실험결과와 비교되었다.

프로펠러에 의한 LNG 운반선 이중모형 선미의 속도변화 계측 (Measurement of Velocity Field Change around Stern of LNG Carrier Double Body Model by Propeller)

  • 김병준;최순호;김형태;반석호
    • 대한조선학회논문집
    • /
    • 제42권5호
    • /
    • pp.448-457
    • /
    • 2005
  • The experiment was performed at the large wind tunnel of the Chungnam National University to measure the velocity distribution around the stern of a Liquefied Natural Gas Carrier model. The data, mean velocity vectors of turbulent shear flows at the stern and near-wake including the propeller plane, were obtained by a five-hole Pilot tube for the double body model fixed inside the wind tunnel test section. The present result of the double body model shows a close agreement with the result of the lowing tank experiment performed by the KRISO for the same ship model. The characteristics of the LNG stern flow are discussed based on the measured velocity distribution. The data can be very useful for the validation of some numerical methods in computational fluid dynamics.

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

Effect of grain size on the shear strength of unsaturated silty soils

  • Onturk, Kurban;Bol, Ertan;Ozocak, Askin;Edil, Tuncer B.
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.301-311
    • /
    • 2020
  • In this study, shear strength behavior of fine-grained soils was investigated under unsaturated conditions. The samples in the unsaturated state were subjected to a net normal stress (σ-ua) of 40 kPa and different matric suctions (ua-uw) of 50, 100 and 150 kPa. The matric suction values applied in the triaxial tests were selected according to the bubbling pressures determined from the SWC curves. The study was carried out on prepared re-constituted cylindrical samples by uniaxial consolidation of soil slurries. First, consolidated drained (CD) triaxial compression tests were performed on the saturated samples and the cohesion and angle of internal friction were determined. After that, drained triaxial compression tests under matric suctions were performed on the unsaturated samples. In order to obtain unsaturated test results, cohesion and internal friction angle values of saturated samples were used. The nonlinear surface representing the shear strength surface was approximated consisting of two planes (double planar surface). The reason for the nonlinear behavior of some soils is that the amount of sand content contained in it is relatively high and the bubbling pressure/permanent water content value is relatively low.

Investigation of the effects of connectors to enhance bond strength of externally bonded steel plates and CFRP laminates with concrete

  • Jabbar, Ali Sami Abdul;Alam, Md Ashraful;Mustapha, Kamal Nasharuddin
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1275-1303
    • /
    • 2016
  • Steel plates and carbon-fiber-reinforced polymer (CFRP) laminates or plates bonded to concrete substrates have been widely used for concrete strengthening. However, this technique cause plate debonding, which makes the strengthening system inefficient. The main objective of this study is to enhance the bond strength of externally bonded steel plates and CFRP laminates to the concrete surface by proposing new embedded adhesive and steel connectors. The effects of these new embedded connectors were investigated through the tests on 36 prism specimens. Parameters such as interfacial shear stress, fracture energy and the maximum strains in plates were also determined in this study and compared with the maximum value of debonding stresses using a relevant failure criterion by means of pullout test. The study indicates that the interfacial bond strength between the externally bonded plates and concrete can be increased remarkably by using these connectors. The investigation verifies that steel connectors increase the shear bond strength by 48% compared to 38% for the adhesive connectors. Thus, steel connectors are more effective than adhesive connectors in increasing shear bond strength. Results also show that the use of double connectors significantly increases interfacial shear stress and decrease debonding failure. Finally, a new proposed formula is modified to predict the maximum bond strength of steel plates and CFRP laminates adhesively glued to concrete in the presence of the embedded connectors.

Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • 제29권2호
    • /
    • pp.273-286
    • /
    • 2018
  • In recent years, significant progress has been made in developing design rules for stainless steel members, while the investigation on bolted connections is relatively limited, in particular at elevated temperatures. In this paper, experimental and numerical investigations on stainless steel bolted connections at ambient and elevated temperatures from the literature were reviewed. Firstly, the research program that focused on structural behavior of cold-formed stainless steel (CFSS) bolted connections at elevated temperatures carried out by the authors were summarized. Over 400 CFSS single shear and double shear bolted connection specimens were tested. The tests were conducted in the temperature ranged from 22 to $950^{\circ}C$ using both steady state and transient state test methods. It is shown that the connection strengths decrease as the temperature increases in the similar manner for the steady state test results and the transient state test results. Generally, the deterioration of the connection strengths showed a similar tendency of reduction to those of the material properties for the same type of stainless steel regardless of different connection types and different configurations. It is also found that the austenitic stainless steel EN 1.4571 generally has better resistance than the stainless steel EN 1.4301 and EN 1.4162 for bolted connections at elevated temperatures. Secondly, extensive parametric studies that included 450 specimens were performed using the verified finite element models. Based on both the experimental and numerical results, bearing factors are proposed for bearing resistances of CFSS single shear and double shear bolted connections that subjected to bearing failure in the temperature ranged from 22 to $950^{\circ}C$. The bearing resistances of bolted connections obtained from the tests and numerical analyses were compared with the nominal strengths calculated from the current international stainless steel specifications, and also compared with the predicted strengths calculated using the proposed design equations. It is shown that the proposed design equations are generally more accurate and reliable than the current design rules in predicting the bearing resistances of CFSS (EN 1.4301, EN 1.4571 and EN 1.4162) bolted connections at elevated temperatures. Lastly, the proposed design rules were further assessed by the available 58 results of stainless steel bolted connections subjected to bearing failure in the literature. It is found that the proposed design rules are also applicable to the bearing resistance design of other stainless steel grades, including austenitic stainless steel (EN 1.4306), ferritic stainless steel (EN 1.4016) and duplex stainless steel (EN 1.4462).

순수전단이 작용하는 RC막판넬의 전단변형률 증폭 (Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear)

  • 정제평
    • 대한토목학회논문집
    • /
    • 제35권1호
    • /
    • pp.101-110
    • /
    • 2015
  • 최근 Hsu는 전단시험장치를 이용해 순수전단이 작용하는 9개 RC패널요소의 전단시험을 수행하였다(ACI 1997). 최신 트러스모델(수정압축장이론, 회전각연성트러스모델)은 평형조건과 적합조건 그리고 2축 상태에서 RC 막판넬의 연성 응력-변형률 관계를 이용하여 2중 루프의 시행착오방법으로 복잡한 비선형해석을 수행하고 있다. 본 연구는 스트럿과 타이의 파괴기준에 기반한 개선된 모어변형적합방법을 사용해 효율적인 알고리즘을 제안하였고, 이 알고리즘을 이용하여 Hsu가 실험한 전단이력 해석을 빠른 수렴속도로 개선한 것이다. 해석결과에 의하면 전단변형률 증폭상태의 전단변형에너지는 주압축 응력-변형률에 크게 지배받는 것으로 나타났다.

강판으로 보강된 철근콘크리트 부재의 박리기준 유도 (Derivation of Plate Separation Criteria for Reinforced Concrete Members Strengthened with Steel Plates)

  • 오병환;박대균;조재열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.745-750
    • /
    • 2000
  • Steel plate bonding technique is most widely used in strengthening of existing concrete structures, but it has inherently a problem of the premature failure such as interface separation and rip off. So far, many studies have been arid out in the manner of laboratory tests for the reinforced concrete beams to find out he mechanism of the premature failure. However, in order to verify the characteristics of the premature failure, more reasonable local investigations are needed rather than such relatively global experimental works. In this study, therefore, the double lap test which simulate the pure shear loadings and the half beam tests which consider combined flexure-shear force have been done. There are, however, difficulties in getting the normal stress caused to premature failure, so that finite element analysis was performed, too. In numerical study, material nonlinearity was considered, and the interface element was applied to model the interface between steel plate and adhesive. From the results of experimental and numerical studies, a realistic failure criterion on the separation of steel plates has been derived.

  • PDF

석회암공동 상부 기초의 안정성 검토를 위한 모형실험 연구 (Stability Investigation of a Foundation Located above Limestone Cavities Using Scaled Model Tests)

  • 김종우;허석
    • 터널과지하공간
    • /
    • 제26권6호
    • /
    • pp.493-507
    • /
    • 2016
  • 본 연구에서는 축소모형실험을 통해 석회암 공동 상부에 존재하는 구조물 기초의 안정성을 검토하였다. 공동의 형상은 단축장축비율 1/3인 타원형으로 가정하고, 공동의 심도, 위치, 경사, 크기, 개수를 변화시킨 5가지 그룹, 12개 모형들을 실험하였다. 실험결과로서 모형별 균열개시압력, 최대압력, 변형거동, 파괴양상, 침하곡선을 구하였으며, 공동의 제반 조건들이 기초의 안정성에 어떠한 영향을 미치는지를 알아보았다. 무공동 모형은 전단파괴를 보였으나, 공동 포함 모형들은 관입파괴만 발생한 경우, 전단파괴와 관입파괴가 함께 발생한 경우, 전단파괴가 이중으로 발생한 경우 등의 다소 복잡한 파괴형식을 보였다. 공동의 심도가 작을수록, 크기가 클수록, 개수가 많을수록 기초의 안정성은 감소하였다. 공동의 일부가 기초저면의 직하부에 놓일 때는 부등침하가 관찰되었고, 공동들의 분포상태에 따라 침하곡선은 다른 형태를 보였다.

고층 전단벽시스템 적용을 위한 직렬 연결형 강재이력댐퍼의 구조성능평가 (Structural Performance Evaluations of Steel Hysteretic Damper in Series for High-Rise Shear Wall System)

  • 오상훈;최광용;유홍식
    • 한국강구조학회 논문집
    • /
    • 제24권4호
    • /
    • pp.371-382
    • /
    • 2012
  • 기존의 전단벽 시스템은 커플링보를 강하게 설계하는 경우가 많아 상대적으로 내력 및 강성이 낮은 콘크리트 코어와 특정층에 손상이 발생되기 쉬워 건물의 연성이 저하된다. 전단벽 시스템의 연성능력 및 내진성능을 향상시키기 위해 본 연구에서 강성은 기존의 커플링보 이상으로 발휘되면서 설계하중에 따라 내력을 용이하게 변화시킬 수 있는 강재이력댐퍼를 커플링보에 적용하였다. 강재이력댐퍼는 2단으로 직렬 연결된 형상으로 제안하였고, 제안된 강재이력댐퍼의 구조성능을 검증하기 위하여 정적실험을 수행하였다. 또한 FEM 해석결과를 실험결과와 비교 검증하고 강재이력댐퍼의 초기강성, 에너지 흡수능력, 변형능력 등을 분석하여 설계 근사식을 제안하였다.