• 제목/요약/키워드: Double regulating

검색결과 64건 처리시간 0.035초

MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions

  • Park, Sang Mee;Park, Hae Ryoun;Lee, Ji Hye
    • Molecules and Cells
    • /
    • 제40권2호
    • /
    • pp.151-161
    • /
    • 2017
  • Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled, a Drosophila homolog of human mitogen-activated protein kinase 3 (MAPK3) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gq, and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93. In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2, Gq, and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.

OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages

  • Lee, Wook-Bin;Choi, Won Young;Lee, Dong-Hyun;Shim, Hyeran;KimHa, Jeongsil;Kim, Young-Joon
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.133-138
    • /
    • 2019
  • Upon viral infection, the 2', 5'-oligoadenylate synthetase (OAS)-ribonuclease L (RNaseL) system works to cleave viral RNA, thereby blocking viral replication. However, it is unclear whether OAS proteins have a role in regulating gene expression. Here, we show that OAS1 and OAS3 act as negative regulators of the expression of chemokines and interferon-responsive genes in human macrophages. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) technology was used to engineer human myeloid cell lines in which the OAS1 or OAS3 gene was deleted. Neither OAS1 nor OAS3 was exclusively responsible for the degradation of rRNA in macrophages stimulated with poly(I:C), a synthetic surrogate for viral double-stranded (ds)RNA. An mRNA sequencing analysis revealed that genes related to type I interferon signaling and chemokine activity were increased in $OAS1^{-/-}$ and $OAS3^{-/-}$ macrophages treated with intracellular poly(I:C). Indeed, retinoic-acid-inducible gene (RIG)-I- and interferon-induced helicase C domain-containing protein (IFIH1 or MDA5)-mediated induction of chemokines and interferon-stimulated genes was regulated by OAS3, but Toll-like receptor 3 (TLR3)- and TLR4-mediated induction of those genes was modulated by OAS1 in macrophages. However, stimulation of these cells with type I interferons had no effect on OAS1- or OAS3-mediated chemokine secretion. These data suggest that OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages.

Mats1과 Mats2 이중결손 유전자 돌연변이에 의한 골감소증 기전에 대한 연구 (Osteoporotic bone phenotype in Mats1/2 double-mutant mice)

  • 오주환;최윤정;유미현;배문경;김형준
    • 대한구강악안면병리학회지
    • /
    • 제42권6호
    • /
    • pp.159-165
    • /
    • 2018
  • The Hippo pathway was originally discovered in Drosophila by genetic screening and it has been shown to be conserved in various organisms including human. Until now, the essential roles of Hippo pathway in regulating cell proliferation, apoptosis, tumorigenesis, and organ size control is extensively studied. Currently, Mats1/2 (Mob1a/1b), one of the important components in Hippo pathway, mutant mice were generated which has abnormal phenotype such as resistance to apoptosis and spontaneous tumorigenesis. Of note, Mats1/2 mutant mice also showed dental malocclusion. Therefore, in this study, we have evaluated the bone phenotype of Mats1/2 mutant mice. Although the mRNA expressions of Mats1 or Mats2 were observed in both osteoclastogenesis and osteoblastogenesis, the increase of Mats1 level was most prominent during osteoblastogenesis. The RANKL-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs) was unaltered upon Mats1/2 mutation; however, the osteoblast differentiation using calvarial pre-osteoblasts was significantly reduced in Mats1/2 mutant mice compare to that of wild type mice. In accordance with in vitro results, Mats1/2 mutant mice showed decreased bone volume as well as increased trabecular separation in ${\mu}CT$ analyses. These results may provide novel prospect of the probable linkage between Hippo pathway and bone homeostasis.

유방암세포에서 LATS1/2 활성에 의한 당귀 추출물의 항암효과 (Anti-tumorigenic Effects of Angelica gigase Nakai Extract on MBA-MB-231 through Regulating Lats1/2 Activation)

  • 김초롱;김남빈;정한솔;신유수;모정순
    • 동의생리병리학회지
    • /
    • 제34권4호
    • /
    • pp.177-183
    • /
    • 2020
  • The Hippo-YAP signaling pathway is critical for cell proliferation, survival, and self-renewal in both Drosophila and mammals. Disorder of Hippo-YAP pathway leads to tumor development, progression and poor prognosis in various cancers. YAP/TAZ are the key downstream effectors of the Hippo pathway and they can be inhibited through LATS1/2, core kinases in the Hippo pathway, mediated phosphorylation. In this study, we investigated the effect of Angelica gigas Nakai extract (AGNE) on Hippo-YAP/TAZ pathway. First, ANGE induced YAP/TAZ phosphorylation and dissociation of the YAP/TAZ-TEAD transcription complex. By qRT-PCR, we found that ANGE inhibits the expression of YAP/TAZ-TEAD target gene, CTGF and CYR61. In addition, the transcriptional activity of YAP/TAZ was not suppressed significantly in LATS1/2 double-knockout (DKO) cells by ANGE compared to LATS1/2 wild-type (WT) cells, which means AGNE inhibits YAP/TAZ signaling through direct action on LATS1/2. Further, it was confirmed that AGNE-induced activation of LATS1/2 inhibited the migration potential of the vector-expressing cells by suppressing YAP/TAZ activity. The reduced migration potential was restored in active YAP-TEAD expressing cells. Taken together, the results of this study indicate that ANGE downregulates YAP/TAZ signaling in cells through the activation of LATS1/2.

M6A reader hnRNPA2/B1 is essential for porcine embryo development via gene expression regulation

  • Kwon, Jeongwoo;Jo, Yu-Jin;Yoon, Seung-Bin;You, Hyeong-ju;Youn, Changsic;Kim, Yejin;Lee, Jiin;Kim, Nam-Hyung;Kim, Ji-Su
    • 한국동물생명공학회지
    • /
    • 제37권2호
    • /
    • pp.121-129
    • /
    • 2022
  • Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) is an N6-methyladenosine (m6A) RNA modification regulator and a key determinant of prem-RNA processing, mRNA metabolism and transportation in cells. Currently, m6A reader proteins such as hnRNPA2/B1 and YTHDF2 has functional roles in mice embryo. However, the role of hnRNPA2/B1 in porcine embryogenic development are unclear. Here, we investigated the developmental competence and mRNA expression levels in porcine parthenogenetic embryos after hnRNPA2/B1 knock-down. HhnRNPA2/B1 was localized in the nucleus during subsequent embryonic development since zygote stage. After hnRNPA2/B1 knock-down using double stranded RNA injection, blastocyst formation rate decreased than that in the control group. Moreover, hnRNPA2/B1 knock-down embryos show developmental delay after compaction. In blastocyste stage, total cell number was decreased. Interestingly, gene expression patterns revealed that transcription of Pou5f1, Sox2, TRFP2C, Cdx2 and PARD6B decreased without changing the junction protein, ZO1, OCLN, and CDH1. Thus, hnRNPA2/B1 is necessary for porcine early embryo development by regulating gene expression through epigenetic RNA modification.

A plant-based multivitamin, multimineral, and phytonutrient supplementation enhances the DNA repair response to metabolic challenges

  • Yeo, Eunji;Hong, Jina;Kang, Seunghee;Lee, Wonyoung;Kwon, Oran;Park, Eunmi
    • Journal of Nutrition and Health
    • /
    • 제55권4호
    • /
    • pp.450-461
    • /
    • 2022
  • Purpose: DNA damage and repair responses are induced by metabolic diseases and environmental stress. The balance of DNA repair response and the antioxidant system play a role in modulating the entire body's health. This study uses a high-fat and high-calorie (HFC) drink to examine the new roles of a plant-based multivitamin/mineral supplement with phytonutrients (PMP) for regulating the antioxidant system and cellular DNA repair signaling in the body resulting from metabolic stress. Methods: In a double-blind, randomized, parallel-arm, and placebo-controlled trial, healthy adults received a capsule containing either a PMP supplement (n = 12) or a placebo control (n = 12) for 8 weeks. Fasting blood samples were collected at 0, 1, and 3 hours after consuming a HFC drink (900 kcal). The blood samples were analyzed for the following oxidative stress makers: areas under the curve reactive oxygen species (ROS) levels, plasma malondialdehyde (MDA), erythrocytes MDA, urinary MDA, oxidized low-density lipoprotein, and the glutathione:oxidized glutathione ratio at the time points. We further examined the related protein levels of DNA repair signaling (pCHK1 (Serine 345), p-P53 (Serine 15), and 𝛄H2AX expression) in the plasma of subjects to evaluate the time-dependent effects of a HFC drink. Results: In a previous study, we showed that PMP supplementation for eight weeks reduces the ROS and endogenous DNA damage in human blood plasma. Results of the current study further show that PMP supplementation is significantly correlated with antioxidant defense. Compared to the placebo samples, the blood plasma obtained after PMP supplementation showed enhanced DNA damage response genes such as pCHK1(Serine 345) (a transducer of DNA response) and 𝛄H2AX (a hallmark of DNA damage) during the 8 weeks trial on metabolic challenges. Conclusion: Our results indicate that PMP supplementation for 8 weeks enhances the antioxidant system against oxidative stress and prevents DNA damage signaling in humans.

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

  • Hao Shi ;Jiamin Zhao ;Yiwen Li ;Junjie Li ;Yunjia Li;Jia Zhang ;Zhantu Qiu ;Chaofeng Wu ;Mengchen Qin ;Chang Liu ;Zhiyun Zeng ;Chao Zhang ;Lei Gao
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.524-533
    • /
    • 2023
  • Background: Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance Methods: Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression Results: We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance Conclusion: Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.

Strategic Use of QTL Mapping to Improve the Palatability of Rice

  • Yoon-Hee Jang;Jae-Ryoung Park;Eun-Gyeong Kim;Kyung-Min Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.286-286
    • /
    • 2022
  • The properties of starch play an important role in determining the palatability of rice. In addition, the gelatinization temperature (GT) of rice starch is an important factor in determining the quality of rice because it is related to the cooking time and texture of rice. For the development of high-quality rice, it is important to understand the genetic basis of palatability-related traits, and QTL analysis is an effective method to explain the genetic basis of variation in complex traits. QTL mapping related to alkali digestion value (ADV) of brown and milled rice was performed using the 120 Cheongcheong/Nagdong double haploid (CNDH) line. As a result, 12 QTLs related to ADV were detected, and 20 candidate genes were selected from the RM588-RM1163 region of chromosome 6 through screening by gene function analysis. The comparison of the relative expression level of candidate genes showed that OsSS1q6 is highly expressed in CNDH lines with high ADV in both brown rice and milled rice. In addition, OsSS1q6 has high homology with starch synthase 1 protein, and interact with various starch biosynthesis-related proteins, such as GBSSII, SBE, and APL. Therefore, we suggest that OsSS1q6 identified through QTL mapping could be one of the various genes involved in the GT of rice by regulating starch biosynthesis. This study can be used as basic data for breeding high-quality rice and provides a new genetic resource that can increase the palatability of rice.

  • PDF

Embryonic Stem Cells Lacking DNA Methyltransferases Differentiate into Neural Stem Cells that Are Defective in Self-Renewal

  • Bong Jong Seo;Tae Kyung Hong;Sang Hoon Yoon;Jae Hoon Song;Sang Jun Uhm;Hyuk Song;Kwonho Hong;Hans Robert Scholer;Jeong Tae Do
    • International Journal of Stem Cells
    • /
    • 제16권1호
    • /
    • pp.44-51
    • /
    • 2023
  • Background and Objectives: DNA methyltransferases (Dnmts) play an important role in regulating DNA methylation during early developmental processes and cellular differentiation. In this study, we aimed to investigate the role of Dnmts in neural differentiation of embryonic stem cells (ESCs) and in maintenance of the resulting neural stem cells (NSCs). Methods and Results: We used three types of Dnmt knockout (KO) ESCs, including Dnmt1 KO, Dnmt3a/3b double KO (Dnmt3 DKO), and Dnmt1/3a/3b triple KO (Dnmt TKO), to investigate the role of Dnmts in neural differentiation of ESCs. All three types of Dnmt KO ESCs could form neural rosette and differentiate into NSCs in vitro. Interestingly, however, after passage three, Dnmt KO ESC-derived NSCs could not maintain their self-renewal and differentiated into neurons and glial cells. Conclusions: Taken together, the data suggested that, although deficiency of Dnmts had no effect on the differentiation of ESCs into NSCs, the latter had defective maintenance, thereby indicating that Dnmts are crucial for self-renewal of NSCs.

스테로이드제가 Surfactant Protein A의 유전자 발현과 총단백량에 미치는 영향에 관한 실험적 연구 (The Effect of Dexamethasone on Gene Expression and Total Amount of Surfactant Protein A)

  • 임병성;손장원;양석철;윤호주;신동호;박성수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제52권4호
    • /
    • pp.395-404
    • /
    • 2002
  • 연구배경: SP-A는 surfactant의 분비, 합성 및 재순환에 관여하는 중요한 역할을 담당한다. Glucocorticoid는 폐의 형태학적 발생을 촉진시키며, surfactant인지질의 생산을 증가시키고, surfactant B와 C의 축적 및 폐탄성을 향상시킨다. 시험관 내에서의 실험을 통하여 관찰 한 바에 의하면 glucocorticoid의 투여량에 따라 SP-A mRNA와 SP-A 단백의 총량이 증가하기도하고 감소하기도 한다. 그러나 실험동물 내에서의 SP-A mRNA와 SP-A 단백량에 대한 스테로이드의 효과에 관한 보고는 드물다. 방 법: 저자들은 실험동물 내에서의 현황을 파악하고자 dexamethasone을 백서에 투여한 후 SP-A의 유전자 발현양상은 filter hybridization방법으로, SP-A 단백량은 double sandwich ELISA 방법으로 각각 검색하여 dexamethasone의 투여양과 투여기간에 따라 실험동물 내의 SP-A 유전자 발현과 총 SP-A 단백량에 대한 dexamethasone의 효과를 관찰하였다. 결 과: 1) Dexamethasone 투여량에 따른 SP-A mRNA량은 dexamethasone을 일일 0.2 mg/kg 투여한 지 24시간 경과후에 38.8%가 증가하였다. 2) Dexamethasone투여기간에 따른 SP-A mRNA량은 dexamethasone을 일일 2 mg/kg씩 일주일간 투여 후에 대조군에 비하여 49.7%가 유의하게 증가하였다(P<0.01). 3) 폐의 총 SP-A 단백량은 dexamethasone을 일일 2 mg/kg씩 일주일간 투여 후에 대조군에 비하여 373.7%가 유의하게 증가하였다(P<0.005). 결 론: 이상의 결과는 실험동물 내 dexamethasone양에 따른 SP-A mRNA량과 총 SP-A 단백량은 소량을 투여하였을때보다는 대량을 투여 하였을 때, 단기간보다는 장기간 사용하였을 때 유의한 증가가 있음을 알 수 있었다.