• Title/Summary/Keyword: Double emitting layer

Search Result 71, Processing Time 0.029 seconds

INFLUENCE OF ANTHRECENE DOPING ON ELECTRICAL AND LIGHT-EMITTING BEHAYIOR OF 8-HYDROXYQUINOLINE-ALUMINUM BESED ELECTROLUMINESCENT DEVICES

  • Kinoshita, Osamu;Yamaguchi, Ryuichi;Masui, Masayoshi;Takeuchi, Manabu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.449-453
    • /
    • 1996
  • In order to improve EL performance, anthracene was doped into the 8-hydroxyquinoline-aluminum (Alq$^3$) light-emitting layer of organic double layered EL cells. The EL cells were fabricated on ITO glass substrates by vacuum deposition. Doping of anthracene to the light-emitting $Alq^3$layer was performed by means of co-evaporation. The doping concentration was changed in the range of 5 to 30 wt.%. It was confirmed that anthracene doping of appropriate concentration increased the available current density and brightness of the EL cells. Carrier mobility of the $Alq^3$ layer was measured by time of flight method. The influence of anthracene doping on the cell performance was discussed.

  • PDF

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF

Transparent organic light-emitting devices with CsCl passivation layer

  • Kim, So-Youn;Lee, Chan-Jae;Ha, Mi-Young;Moon, Dae-gyu;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.683-686
    • /
    • 2007
  • We have developed the transparent passivation layer for transparent organic light-emitting devices (TOLEDs) using CsCl layer. The CsCl passivation layer improves the optical transmittance of Ca/Ag double layer which have used as a semitransparent cathode, resulting in substantial increase of the luminance by the enhanced light extraction out of the cathode surface of the TOLEDs.

  • PDF

Luminescent and electrical properties of MEH-PPV and 1,1,4,4-Tetraphenyl-1,3-butadiene Double Layer films (MEH-PPV와 TPB 다층박막의 광발광 및 전기적 특성)

  • 이명호;김영관;신동명;최종선;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.163-166
    • /
    • 1997
  • Electroluminescent(EL) dcvice based on organic thin layers have attracted lots of interests because of thier possible application as large-area light-emitting displays. It was known that MEH-PPV and 1, 1, 4, 4, -Tetraphenyl-1, 3-butadiene(TPB) has red and blue emission peak at 580nm and 480nm, respectively. In this study, MEH-PPV films and TPB films were prepared by spin coating and vacuum deposition method, respectively. Films of MEH-PPV and TPB double layer were also prepared by the same method. Photoluminescent(PL) characteristics of these single and doubler layers were investigated, where a cell structure of glass substrate/ITO/MEH-PPV and/or TPB/Al was employed. It was found that the photoluminescent efficiency of TPB film was higher than that of MEH-PPV film with a single layer and also with a double structure. These films have also different I-V characteristics.

  • PDF

Synthesis of Phenanthridine-Containing Conjugated Copolymer and OLED Device Properties

  • Park, Lee-Soon;Jeong, Young-Chul;Han, Yoon-Soo;Kim, Sang-Dae;Kwon, Young-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.588-591
    • /
    • 2004
  • Polyazomethine type conjugated copolymers containing phenanthridine units, poly(PZ-PTI), were synthesized by Schiff-base reaction. This new conjugated copolymer exhibited improved solubility in common organic solvents due to the presence of alkyl side chains as well as phenanthridine groups. Double layer (ITO/poly(PZ-PTI)/$Alq_3$/Mg) light emitting diode (LED) exhibited enhanced EL emission and efficiency compared to that of single layer (ITO/poly(PZ-PTI)/Mg) LED. With increasing the thickness of $Alq_3$ layer in double layer (ITO/poly(PZ-PTI)/$Alq_3$/Mg) LED the emission peak gradually shifted to the single layer (ITO/$Alq_3$/Mg) LED, confirming good hole transporting behaviour of the synthesized conjugated copolymer.

  • PDF

Optical properties of top-emission organic light-emitting diodes due to a change of cathode electrode (음전극 변화에 따른 전면 유기 발광 소자의 광학적 특성)

  • Joo, Hyun-Woo;An, Hui-Chul;Na, Su-Hwan;Kim, Tae-Wan;Jang, Kyung-Wook;Oh, Hyun-Suk;Oh, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.345-346
    • /
    • 2008
  • We have studied an emission spectra of top-emssion organic light-emitting diodes(TEOLED) due to a change of cathode and organic layer thickness. Device structure is Al(100nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/cathode. And two different types of cathode were used; one is LiF(0.5nm)/Al(25nm) and the other is LiF(0.5nm)/Al(2nm)/Ag(30nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layer was kept to be about 2:3. Al and Al/Ag double layer cathode devices show that the emission spectra were changed from 490nm to 560nm and from 490nm to 560nm, respectively, when the total organic layer increase. Full width at half maximum was changed from 67nm to 49nm and from 90nm to 35nm as the organic layer thickness increases. All devices show that view angle dependent emission spectra show a blue shift. Blue shift is strong when the organic layer thickness is more than 140nm. Devece with Al/Ag double layer cathode is more vivid.

  • PDF

금속이 코팅된 PET필름의 수분침투 특성 평가

  • Hwang, Bin;Choe, Yeong-Jun;Park, Gi-Jeong;Kim, Hoe-Bong;Jo, Yeong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.351-351
    • /
    • 2010
  • OLED(organic light emitting diode)는 액정디스플레이를 대체할 차세대 평판디스플레이로 많은 주목을 받고 있다. 현재 많이 사용되고 있는 OLED의 기판재료는 Glass기판이지만 차세대 Flexible한 display에서의 적용을 위해서는 가볍고 유연한 plastic을 기판 재료로 사용 할 것으로 보인다. 하지만 plastic이 기판재료로 된 OLED의 가장 큰 단점중의 하나가 수분과 산소에 민감하여 열화를 초래한다는 것이다. 이런 수분침투와 열화 과정으로 인해 OLED의 발광효과가 약해져 OLED의 수명과 직접적으로 연결된다. 하여 외부에서 OLED내부로 유입되는 산소, 수분으로 부터 발광재료와 전극의 산화를 방지하며 외부의 충격으로부터 소자를 보호하기 위한 봉지기술은 반드시 필요하다. 따라서 본 연구에서는, flexible한 OLED에 적용되는 금속 코팅한 막의 적층구조 및 기판의 노출온도에 따른 금속 코팅막의 수분침투 특성에 대해 MOCON의 weight gain test (WGT)를 통해 barrier layer에 대해 평가하고 이에 대한 mechanism을 확립하는데 그 목적이 있다. 금속을 코팅한 막은 OLED의 cathode와 anode 재료로 많이 사용되는 Al과 ITO를 sputter장비를 이용해 single layer와 double-layer의 두 가지 구조로 PET기판에 증착하였다. 증착한 Al막의 두께는 각각 50 nm, 100 nm, 200 nm, 400 nm 등 4가지로 하였다. double-layer의 경우에는 총 두께를 절반씩 기판의 양쪽에 증착하였다. 적층구조에 따른 수분침투 특성 평가 결과로 보면 같은 두께일 때 double-layer는 single layer에 비해서 모든 시편에서 수분의 투습율이 낮음으로써 더 좋은 수분침투의 barrier 특성을 나타내었다. 특히 100 nm이상인 경우 투습율은 예상한 값보다 50%이상 낮게 나타났다.

  • PDF

Novel Small Molecular Materials For Solution Green Phosphorescent OLEDs

  • Lee, Ho-Jae;Yu, Eun-Sun;Jung, Sung-Hyun;Kim, Hyung-Sun;Kang, Eui-Su;Chae, Mi-Young;Chang, Tu-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.791-793
    • /
    • 2009
  • We have developed novel small molecular materials for solution phosphorescent OLEDs having multilayered device structures. These novel materials are applied as an interlayer which is between a buffer layer (or hole injection layer) and an emitting layer to improve the luminance efficiency of solution green phosphorescent OLEDs. In order to form stable double layers by spincoating process, we take the advantage of solubility differences of interlayer materials and emitting materials. Using CIM3 as an interlayer, we have attained the best luminance efficiency, 36 cd/A at a given constant of 2000cd/$m^2$ in the structure of ITO/PEDOT:PSS/CIM3/CIM6:Ir(mppy)$_3$/BAlq/Alq$_3$/LiF/Al.

  • PDF

Characterization of Organic Light-Emitting Diode (OLED) with Dual Emission using Al:Au Cathode (Al:Au 음극층을 이용한 양면발광(dual emission) 유기 EL 소자의 Al 두께별 특성 평가)

  • Lee, Su-Hwan;Kim, Dal-Ho;Yang, Hee-Doo;Kim, Ji-Heon;Lee, Gon-Sub;Park, Jea-Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.47-51
    • /
    • 2008
  • The Al:Au double-layer metal electrode for use in transparent, dual emission of organic light-emitting diode (OLED) was fabricated. The electrode of Al:Au metals with various thicknesses was deposited by the vacuum thermal evaporation technique. For Al thickness of 1 nm, a bottom luminance of $4880\;cd/m^2$ was observed at 8 V. Otherwise, top luminance of $2020\;cd/m^2$ were observed at 8 V. In addition, the threshold voltages of the electrodes were 2.2 V. It was forward that the inserting 1 nm Al between LiF and Au enhanced electron injection with tunneling effect.

  • PDF