• Title/Summary/Keyword: Double deck

Search Result 145, Processing Time 0.028 seconds

Development of remote control automatic fire extinguishing system for fire suppression in double-deck tunnel (복층터널 화재대응을 위한 원격 자동소화 시스템 개발 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong;Park, Sangheon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.167-175
    • /
    • 2019
  • To effectively deal with the fire in tunnel which is mostly the vehicle fire, it's more important to suppress the fire at early stage. In urban tunnel, however, accessibility to the scene of fire by the fire fighter is very limited due to severe traffic congestion which causes the difficulty with firefighting activity in timely manner and such a problem would be further worsened in underground road (double-deck tunnel) which has been increasingly extended and deepened. In preparation for the disaster in Korea, the range of life safety facilities for installation is defined based on category of the extension and fire protection referring to risk hazard index which is determined depending on tunnel length and conditions, and particularly to directly deal with the tunnel fire, fire extinguisher, indoor hydrant and sprinkler are designated as the mandatory facilities depending on category. But such fire extinguishing installations are found inappropriate functionally and technically and thus the measure to improve the system needs to be taken. Particularly in a double-deck tunnel which accommodates the traffic in both directions within a single tunnel of which section is divided by intermediate slab, the facility or the system which functions more rapidly and effectively is more than important. This study, thus, is intended to supplement the problems with existing tunnel life safety system (fire extinguishing) and develop the remote-controlled automatic fire extinguishing system which is optimized for a double-deck tunnel. Consequently, the system considering low floor height and extended length as well as indoor hydrant for a wide range of use have been developed together with the performance verification and the process for commercialization before applying to the tunnel is underway now.

Study of structural parameters on the aerodynamic stability of three-tower suspension bridge

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.471-485
    • /
    • 2010
  • In comparison with the common two-tower suspension bridge, due to the lack of effective longitudinal restraint of the center tower, the three-tower suspension bridge becomes a structural system with greater flexibility, and more susceptible to the wind action. By taking a three-tower suspension bridge-the Taizhou Bridge over the Yangtze River with two main spans of 1080 m as example, effects of structural parameters including the cable sag to span ratio, the side to main span ratio, the deck's dead load, the deck's bearing system, longitudinal structural form of the center tower and the cable system on the aerodynamic stability of the bridge are investigated numerically by 3D nonlinear aerodynamic stability analysis, the favorable structural system of three-tower suspension bridge with good wind stability is discussed. The results show that good aerodynamic stability can be obtained for three-tower suspension bridge as the cable sag to span ratio is assumed ranging from 1/10 to 1/11, the central buckle are provided between main cables and the deck at midpoint of main spans, the longitudinal bending stiffness of the center tower is strengthened, and the spatial cable system or double cable system is employed.

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.

An Experimental Study on Reinforced Effect Using Double Adhensive Panels in Bridge Deck Slabs (프리케스트판을 이용한 교량상판 단면증설 보강공법에 관한 실험적 연구)

  • 박정기;하경민;지한상;김은겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.791-796
    • /
    • 2000
  • Purpose of this study is to analyze the characteristics and reinforcement effects of restored the RC bridge deck with small precast panel through static load tests and to provide the basic information for the damaged slab decks. In the tests for realizing movement of general RC bridge slabs, 6 samples are prepared and tested. All reinforced samples are restored with 1 or 2-layers precast panels by epoxy mortar. The movement of restored slabs is analyzed and compared with the behavior of non-restored slabs. In result of these tests, tension cracks due to bending moment are show, and after static load test there happens finally a punching shear failure, which is the general type of RC bridge failure. The tests show that restoration of the RC slab results in increasing of loading capacity about 30~50% an restoring panels are stick to slab and moving with slab under loading test.

  • PDF

Investigation on spanwise coherence of buffeting forces acting on bridges with bluff body decks

  • Zhou, Qi;Zhu, Ledong;Zhao, Chuangliang;Ren, Pengjie
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.181-198
    • /
    • 2020
  • In the traditional buffeting response analysis method, the spanwise incomplete correlation of buffeting forces is always assumed to be same as that of the incident wind turbulence and the action of the signature turbulence is ignored. In this paper, three typical bridge decks usually adopted in the real bridge engineering, a single flat box deck, a central slotted box deck and a two-separated paralleled box deck, were employed as the investigated objects. The wind induced pressure on these bridge decks were measured via a series of wind tunnel pressure tests of the sectional models. The influences of the wind speed in the tests, the angle of attack, the turbulence intensity and the characteristic distance were taken into account and discussed. The spanwise root coherence of buffeting forces was also compared with that of the incidence turbulence. The signature turbulence effect on the spanwise root coherence function was decomposed and explained by a new empirical method with a double-variable model. Finally, the formula of a sum of rational fractions that accounted for the signature turbulence effect was proposed in order to fit the results of the spanwise root coherence function. The results show that, the spanwise root coherence of the drag force agrees with that of incidence turbulence in some range of the reduced frequency but disagree in the mostly reduced frequency. The spanwise root coherence of the lift force and the torsional moment is much larger than that of the incidence turbulence. The influences of the wind speed and the angle of attack are slight, and they can be ignored in the wind tunnel test. The spanwise coherence function often involves several narrow peaks due to the signature turbulence effect in the high reduced frequency zone. The spanwise coherence function is related to the spanwise separation distance and the spanwise integral length scales, and the signature turbulence effect is related to the deck-width-related reduced frequency.

Effect of widening excavation in divergence section of a double-deck tunnel on its stability (복층터널 분기구 확폭구간 굴착에 따른 안정성 영향)

  • La, You-Sung;Kim, Yunhee;Lee, Kangil;Kim, Yongseong;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.435-450
    • /
    • 2020
  • The divergence section of a double-deck tunnel can be divided into a 'widening pre-divergence section', a large cross-section with a cap shape and a 'post-divergence section' where the separation between the main and the branch tunnel is made. Since the cross-section of the widening pre-divergence section is considerably larger than that of the post-divergence section, the influence of excavation due to the different sizes and shapes in the cross-section should be considered in the examination of the tunnel stability. In this study, the effect of the preceding excavation, that is the excavation of the widening pre-divergence section, on excavation stability of the post-divergence section was examined by varying the excavation methods and bench lengths through 3D finite element analysis. The results showed that although the effects of the excavation methods and the bench lengths are not significant on the variation of principal stresses, the preceding excavation causes a relatively large variation on the stresses which may have an impact on the stability of the post-divergence section from the comparison of Stress-Strength Ratio (SSR) between the cases with and without the consideration of the preceding excavation effect by 2D finite element analysis.

A study on structural performance of steel brackets in vertical shaft connected to double-deck tunnel (복층터널 연결 수직구용 철재브래킷 구조성능 연구)

  • Shin, Young-Wan;Min, Byeong-Heon;Nam, Jung-Bong;Lee, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Since the double-deck tunnel is deeply constructed in the city, it is necessary to secure the installation space of air supply and exhaust, escape passage stairs, elevator, distribution facilities and connection tunnels in the vertical shaft for the double-deck tunnel. Also, in order to minimize the effect of construction on adjacent area, it is necessary to construct the concrete structures at high speed in vertical shaft after tunnel excavation. Therefore, the slabs and the stairs in vertical shaft are needed to be constructed using precast concrete, and the rapid construction techniques of bracket for supporting the inner precast structure are needed. The bracket installation methods include cast-in-place concrete, precast concrete and steel. In this study, the improvement of the steel brackets with good economical efficiency and good workability was carried out in consideration of the improvement of the construction speed. We have developed a new bracket that is optimized through bracket shape improvement, anchor bolt position adjustment and quantity optimization. As a result of the structural performance test, it was confirmed that the required load supporting capacity was secured. As a result of structural performance test for bar type anchor bolt and bent anchor anchor bolt, it was confirmed that the required load carrying capacity was secured and that the load bearing capacity of bent anchor bolt was large.

A study on Electric system design of double deck trains (2층 열차 전기시스템 설계에 관한 연구)

  • Baik, Kwang-Sun;Jang, Dong-Uk;Kim, Jin-Whan;Ohn, Jung-Ghun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.296-299
    • /
    • 2003
  • 주어진 운행횟수에서 가능한 많은 승객을 최대한 빠른 시간에 정해진 목적지까지 이동시킬 수 있는 2층 열차의 기본 설계에 필요한 차량내 장치, 신호시스템 및 급전계통에 대하여 전기관련 시스템의 주요 사양을 검토하여 향후 차량을 본격적으로 설계시 기본 자료로 활용할 수 있도록 하였다.

  • PDF

Civil Engineering Conference in the Asian Region, Visit to Several Road and Bridge Construction Site of Japan (아시아 토목대회 및 일본 도로 교량건설 현장 시찰)

  • 장래섭
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.4
    • /
    • pp.17-29
    • /
    • 2001
  • After participating in the 2nd, Asian Civil Engineering Conference which is subjected by Japan, a trip of site during construction recent was done. The country Is being developed to use effectvely by the methods of aqua-line, truss suspersion bridge. double deck bridge, etc. The Japanese engineers have a pride to do their best for the construction In the given environment. 1 want to notify that our civil engineers must have the responsibility to develop the technical engineering, to make the useful country and to resolve the environmental problem via the oversea experience like as.

  • PDF

Dynamic Analysis for a Double-Rib Arch Railway Bridge Considering Real High Speed Train Loads (실 고속열차하중을 고려한 이중 리브 아치 교량의 동적해석)

  • Kang, Young-Jong;Kim, Jung-Hun;Shin, Ju-Hwan;Lee, Myeong-Sup
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1138-1142
    • /
    • 2010
  • High speed railway structure, contact of vehicle needs to design considering the running stability(dynamic behavior). Also, upper structure has to satisfy design standard about moving load, high speed train(KTX). So, the high speed railway structure has to satisfy the requirement of natural frequency, vertical acceleration on deck, face distortion and vertical displacement considering ride comfort, which is suggested Ho-nam high speed railway design standard. In this study, it was investigated and evaluated to the dynamic behavior for a double-rib arch railway bridge subjected to moving load considering real high speed train loads.

  • PDF