• Title/Summary/Keyword: Double Relaxation

Search Result 69, Processing Time 0.025 seconds

Ultrasonic Absorption Measurements of Bovine Serum Albumin Solutions in the Frequency Range 200 kHz to 3 MHz (주파수 200 kHz-3 MHz영역에 대한 알부민용액의 초음파 흡수측정)

  • Bae, Jong-Rim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1E
    • /
    • pp.14-19
    • /
    • 2006
  • Ultrasonic absorption and velocity spectra in bovine serum albumin (BSA) aqueous solutions have been measured at $20^{\circ}C$ over the frequency range 0.2-3 MHz in the pH range 1.5-13.2. The high-Q ultrasonic resonator and pulse-echo overlap methods were used. At acid pH's, excess absorption over that of pH 7 was explained by double relaxation. The pH dependences of the relaxation frequency and maximum absorption per wavelength, showed that the relaxation at about 200 kHz was related to the expansion of molecules and that about 3 MHz resulted from the proton transfer reaction of carboxyl group. At alkaline pH's, the excess absorption was explained by double relaxation. The relaxation at about 300 kHz was associated with a helix-coil transition, and that about 3 MHz was attributed to the proton transfer reaction of phenolic group. The rate constants and volume changes associated with these processes were estimated.

Effect of relaxation time on generalized double porosity thermoelastic medium with diffusion

  • Mohamed I.A. Othman;Nehal T. Mansour
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.475-482
    • /
    • 2023
  • This paper studies the effect of the relaxation time on a two-dimensional thermoelastic medium which has a doubly porous structure in the presence of diffusion and gravity. The normal mode analysis is used to obtain the analytic expressions of the physical quantities, which we take the solution form in the exponential image. We have discussed a homogeneous thermoelastic half-space with double porosity with the effect of diffusion and gravity. The equations of generalized thermoelastic material with double porosity structure with one relaxation time have been developed. Moreover, the expressions of many physical quantities are explained. The general solutions, under specific boundary conditions of the problem, were found in some detail. In addition, numerical results are computed.

Boosting up the photoconductivity and relaxation time using a double layered indium-zinc-oxide/indium-gallium-zinc-oxide active layer for optical memory devices

  • Lee, Minkyung;Jaisutti, Rawat;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.278-278
    • /
    • 2016
  • Solution-processed metal-oxide semiconductors have been considered as the next generation semiconducting materials for transparent and flexible electronics due to their high electrical performance. Moreover, since the oxide semiconductors show high sensitivity to light illumination and possess persistent photoconductivity (PPC), these properties can be utilized in realizing optical memory devices, which can transport information much faster than the electrons. In previous works, metal-oxide semiconductors are utilized as a memory device by using the light (i.e. illumination does the "writing", no-gate bias recovery the "reading" operations) [1]. The key issues for realizing the optical memory devices is to have high photoconductivity and a long life time of free electrons in the oxide semiconductors. However, mono-layered indium-zinc-oxide (IZO) and mono-layered indium-gallium-zinc-oxide (IGZO) have limited photoconductivity and relaxation time of 570 nA, 122 sec, 190 nA and 53 sec, respectively. Here, we boosted up the photoconductivity and relaxation time using a double-layered IZO/IGZO active layer structure. Solution-processed IZO (top) and IGZO (bottom) layers are prepared on a Si/SiO2 wafer and we utilized the conventional thermal annealing method. To investigate the photoconductivity and relaxation time, we exposed 9 mW/cm2 intensity light for 30 sec and the decaying behaviors were evaluated. It was found that the double-layered IZO/IGZO showed high photoconductivity and relaxation time of 28 uA and 1048 sec.

  • PDF

Stability analysis in BWRs with double subdiffusion effects: Reduced order fractional model (DS-F-ROM)

  • Gilberto Espinosa-Paredes;Ricardo I. Cazares-Ramirez;Vishwesh A. Vyawahare;Erick-G. Espinosa-Martinez
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1296-1309
    • /
    • 2024
  • The aim of this work is to explore the effect of the double subdiffusion on the stability in BWRs. A BWR novel reduced order model with double subdiffusion effects: reduced order fractional model (DS-F-ROM) to describe the neutron and heat transfer processes was proposed for this study. The double subdiffusion was developed with a fractional-order two-equation model, and with different fractional-orders and relaxation times. The stability analysis was carried out using the root-locus method and change from the s to the W domain and were confirmed using the time-domain evolution of neutron flux for a unit step change in reactivity. The results obtained using the reduced fractional-order model are presented for different anomalous diffusion coefficient values. Results are compared with normal diffusion and P1 equations, which are obtained straightforwardly with DS-ROM when relaxation time tends to zero, and when the anomalous diffusion coefficient tends to one, respectively.

Nuclear Magnetic Resonance Study of the Raman Spin-Phonon Processes in the Relaxation Mechanisms of Double Sulfate Li3Rb(SO4)2 Single Crystals

  • Heo, Cheol;Lim, Ae-Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.40-53
    • /
    • 2011
  • The NMR spectra of $Li_3Rb(SO_4)_2$ crystals and their relaxation processes were investigated by using $^7Li$ and $^{87}Rb$ NMR. The relaxation rates of the $^7Li$ and $^{87}Rb$ nuclei in the crystals were found to increase with increasing temperature, and can be described by the relation $T_1^{-1}{\propto}AT^2$. The dominant relaxation mechanism for these nuclei with electric quadrupole moments is provided by the coupling of these moments to the thermal fluctuations of the local electric field gradient via Raman spin-phonon processes.

Theoretical Investigation of the Vibrational Relaxation of NO(${\upsilon}=1-7$) in Collisions with $O_{2}\;and\;N_{2}$

  • Jongbaik Ree
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.47-52
    • /
    • 1993
  • The vibrational relaxation rate constants of NO(v = 1-7) by $O_2\;and\;N_2$ have been calculated in the temperature range of 300-1000 K using the solution of the time-dependent Schrodinger equation. The calculated relaxation rate constants by $O_2$ increase monotonically with the vibrational energy level v, which is compatible with the experimental data, while those by $N_2$ are nearly independent of v in the range of $3.40 {\pm}1.60{\times}10_{-16} cm^3$/molecule-sec at 300 K. Those for NO(v) + $N_2$ are about 2-3 orders of magnitude smaller than those for NO(v) + $O_2$, because the latter is an exothermic processes while the former an endothermic. Relaxation processes can be interpreted by single-quantum V-V transition. The contributions of V-T/R transition and double-quantum V-V transition to the relaxation are negligible over the entire temperature range.

A Low-noise Double Relaxation Oscillation SQUID Magnetometer for Measuring Magnetoencephalogram

  • 강찬석;이용호;권혁찬;김진목;윤병운
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.151-158
    • /
    • 2002
  • We developed a useful SQUID magnetometer for biomagnetic applications, magnetoencepha-logram(MEG) and magnetocardiogram(MCG), etc. The SQUIDs are based on Double Relaxation Oscillation SQUID(DROS). DROS consists of two SQUIDs(signal SQUID and reference SQUID) in series, and a relaxation circuit of an inductor and a resistor. Specially we used single reference junction instead of the reference SQUID. The SQUIDs are based on hysteretic $Nb/AlO_{x}$Nb junctions, fabricated by using a simple four level process. Because DROS magnetometer has large flux-to-voltage transfer coefficient, we can use simple flux-locked loop electronics fur SQUID operation. When the DROS magnetometer was operated inside a magnetically shielded room, its average magnetic field noise was about 3 (equation omitted) at 100 Hz. This noise level is low enough to measure biomagnetic fields. In this paper, we describe noise characteristics of DROS magnetometer, depending on the operation condition . .

  • PDF

The Effect of the Collision Process Between Molecules on the Rates of Thermal Relaxation of the Translational-Rotational-Vibrational Energy Exchange (분자간 충돌과정에 따른 병진-회전-진동에너지의 이완율)

  • Heo, Joong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1494-1500
    • /
    • 2004
  • A zero-dimensional direct simulation Monte Carlo(DSMC) model is developed for simulating diatomic gas including vibrational kinetics. The method is applied to the simulation of two systems: vibrational relaxation of a simple harmonic oscillator and translational-rotational-vibrational energy exchange process under heating and cooling. In the present DSMC method, the variable hard sphere molecular model and no time counter technique are used to simulate the molecular collision kinetics. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies.

Dielectric Properties and a Equivalent Circuit of ZnO-Based Varistor (ZnO 바리스터의 유전특성과 등기회로)

  • Rho, Il-Soo;Kang, Dae-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2166-2172
    • /
    • 2007
  • In this study a low-signal equivalent circuit based on the Double Schottky Barrier model is proposed for ZnO-based varistor. Since pin-lead inductance and stray capacitance are considered in pin-lead type ZnO varistor these inductance and capacitance could be removed from the experimental dielectric data of the varistor. According to the equivalent circuit simulation results the higher the varistor-voltage of varistor sample the capacitance of dielectric layer is larger, and the capacitances of semiconducting layer and depletion layer are smaller, while the parallel resistances of semiconducting layer and depletion layer are more larger values. Spectra of the dielectric loss factor $tan{\delta}$ show 2 peaks in low frequency and high frequency regions respectively. The low-frequency peak is due to the relaxation by deep donors and the high-frequency peak is due to the relaxation by shallow donors. Above results are well consistent with the theoretical mechanism of ZnO varistor.