• Title/Summary/Keyword: Double Inlet

Search Result 113, Processing Time 0.028 seconds

Experimental Study on the Aerodynamic Performance of Double Inlet Sirocco Fan for a Package Air Conditioner (PAC용 양흡입 시로코홴의 공력성능에 관한 실험적 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2013
  • The aerodynamic performance of double inlet sirocco fan is strongly dependent upon the design factors of impeller and scroll. In this paper, the change of scroll size was adopted to investigate the aerodynamic performances of double inlet sirocco fan and indoor PAC. Especially, a scroll expansion angle and a cut-off clearance ratio were considered to change the scroll size. In addition, the installation depth between double inlet sirocco fan and indoor PAC was considered. As a result, the total pressure efficiency of double inlet sirocco fan shows about 62%~73% according to the change of scroll expansion angles. Moreover, the flowrate performance of indoor PAC is the best at the condition of a scroll expansion angle of 8°, an installation depth of 15 mm and a cut-off clearance ratio of 8%.

Evaluation of Inflow Uniformity on the Performance of Double-Inlet Centrifugal Blower Using Optimal Design Method (양흡입 원심블로어 성능향상을 위한 입구 유동 최적화 연구)

  • Lee, Jong-Sung;Jang, Choon-Man;Jeon, Hyun-Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.4
    • /
    • pp.326-333
    • /
    • 2013
  • This paper presents the performance enhancement of a double-inlet centrifugal blower by the shape optimization of an inlet duct. Two design variables, a length of anti circulation vane and an angles of inlet guide, are introduced to improve the inlet flow uniformity leading to the blower performance. Three-dimensional Navier-Stokes equations are used to analyze the blower performance and the internal flow of the blower. From the shape optimization of the inlet duct of the double-inlet centrifugal blower, the optimal positions of each design variable are determined. Throughout the analysis of sensitivity, it is found that the angle of the inlet guide is more effective than the length of the anti-circulation vane to increase flow uniformity at the outlet of the duct. Efficiency and pressure for the optimal inlet duct shape are successfully increased up to 3.55% and 3.2% compared to those of reference blower at the design flow condition, respectively. Detailed flow field inside the blower is also analyzed and compared.

Experimental Study on the Performance Characteristics for the Three Types of the Pulse Tube Refrigerators (맥동관 냉동기의 유형별 성능특성에 관한 실험적 연구)

  • Park, Seong-Je;Go, Deuk-Yong
    • 연구논문집
    • /
    • s.24
    • /
    • pp.27-39
    • /
    • 1994
  • lower vibration than in any other small refrigerators. The experimental results of three types of pulse tube refrigerators are presented in this paper. The objectives of this study are to develop the design technology of the double inlet pulse tube refrigerator and acquire its application method. As a preliminary experiment, the refrigeration performances of the basic, orifice and double inlet pulse tube refrigerator were investigated. The lowest temperature obtained in this experiment was 34.4K. The refrigeration capacity at the optimum operating condition of the double inlet pulse tube refrigerator was 23W at 80K.

  • PDF

Numerical Analysis of a Double Inlet Pulse Tube Refrigerator (이중입구 맥동관냉동기의 수치적 해석)

  • Chai, W.B.;Jeong, K.S.;Choi, H.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.501-511
    • /
    • 1995
  • A numerical model for predicting the performance of gas distrubutor type double inlet pulse tube refrigerators has been developed. The model was based on adiabatic analysis and the losses of heat exchangers and regenerator were considered. Thermodynamic behavior of working fluid within a double inlet pulse tube refrigerator was investigated and the effects of design parameters, such as valve and orifice openings, cold heat exchanger temperature, frequency and pulse tube length, on the cooling capacity and COP were shown.

  • PDF

Analysis for Seasonal Operation Performance of Multistory Facade (전면형 이중외피의 절기별 운용성능 분석)

  • Im, Hye-Jin;Cho, Soo;Sung, Uk-Ju;Lim, Sang-Hun;Haan, Chan-Hun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • In this study, to present the data in the internal thermal condition of Double skin facade were measured internal temperature and inlet and outlet openings wind speed of double skin facade. Measurements were similar to temperatures in the upper double skin facade. Especially in summer, temperature stratification is through to be unfulfilled seamlessly despite inlet and outlet openings open. Double skin facade inlet and outlet openings of the air flow rate was slower outlet openings of the air flow rate than inlet openings of the air flow rate.

A Design Optimization Study of Diffuser Shape in a Supersonic Inlet

  • Lim, S.;Koh, D.H.;Kim, S.D.;Song, D.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.756-760
    • /
    • 2008
  • Optimum shape of Double-cone supersonic inlet is studied by using numerical methods. Double-cone intake shape is used for the design optimization study. And the total pressure recovery at the exit is used to assess the aerodynamic performance of the inlet.

  • PDF

Performance Analysis of Summertime Heat Transfer Characteristics of the Double Skin Window for Plant Factory (식물공장 이중창호의 하절기 열전달 성능 분석)

  • So, Jae-Hyun;Kim, Woo-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.351-357
    • /
    • 2012
  • To reduce the summertime cooling load of a plant factory, a concept design was performed for the double skin window which utilizes the low temperature air from a ground coupled heat exchanger. The design parameters were selected as the number of cavity air inlet, the cavity thickness, the location of cavity air inlet, and the configuration of cavity air outlet. A parametric study was conducted in a systematic way to evaluate the heat transfer characteristics of the double skin window. As the number of cavity air inlet and the cavity thickness increase, the heat flux from outside air to indoor air was decreased. The effect of the location of cavity air inlet was not significant and the larger cavity air outlet area gave us relatively better heat blocking performance from outside hot air. This study demonstrated that it is possible to develop an improved double skin window by utilizing a ground coupled heat exchanger.

Performance Characteristics of Double-Inlet Centrifugal Blower According to Inlet and Outlet Angles of an Impeller (임펠러 입출구각에 따른 양흡입 원심송풍기 성능특성)

  • Lee, Jong-Sung;Jang, Choon-Man
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.191-199
    • /
    • 2014
  • Effects of design variables on the performance of a double-inlet centrifugal blower have been analyzed based on the three-dimensional flow analysis. Two design variables, blade inlet and outlet angles, are introduced to enhance a blower performance. General analysis code, ANSYS-CFX13, is employed to analyze internal flow and a blower performance. SST turbulence model is employed to estimate the eddy viscosity. Throughout the shape optimization of an impeller at the design flow condition, the blower efficiency and pressure are successfully increased by 4.7 and 1.02 percent compared to reference one. It is noted that separated flow observed near cut-off region can be reduced by optimal design of blade angles, which results in stable flow pattern in the blade passage and increase of a blower performance. The stable flow at the impeller also makes good effects at the outlet of a volute casing.

Flow Characteristic with Distance of Inlet Port and Rotating Length of Fluid in the Double Heat Exchanger (이중관 열교환기의 유체 유입위치와 회전길이에 따른 유동특성)

  • Lee, Seung-Ha;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • The length and position of the inlet port on the double tube heat exchanger is analyzed by CFX ver.11 for studying the characteristic of its flow distribution. When the boundary conditions of the inlet temperature and mass flow rate were each $20^{\circ}C$ and 10 ~ 50 kg/min, 3 models that are based on the distance between the inlet port and the center of the heat exchanger(0, 5.025, 10.05 mm) were analyzed to find the uniformity of the flow rate. Based on the flow rate, 4 lengths (23.723, 33.890, 44.057, 57.274 mm) were used to study the flow distribution according to Reynolds Number. The results show that, when the distance from the inlet to the position of the center of the heat exchanger is 10.05 mm and the length is 57.274 mm, the flow distribution is the most unified.

Pressure Measurement in Double Inlet Pulse Tube Refrigerator (이중 입구형 맥동관 냉동기에서의 압력 파형 측정)

  • 정제헌;남관우;정상권;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.390-396
    • /
    • 2004
  • A double-inlet pulse tube refrigerator was fabricated as a U-shape with $\Phi$19.0 mm${\times}$125 mm regenerator packed by #200 stainless steel mesh and $\Phi$12.7 mm${\times}$125 mm pulse tube. A pressure sensor was installed at the inlet of the regenerator and a differential pressure sensor was installed across the bypass. Amplitude of the pulsating pressure was independent of the opening of the orifice and the bypass valves. Helium flow through the orifice and the bypass was calculated based on the measured pressure. Energy loss through the orifice and the bypass was evaluated with the measured pressure and the calculated helium flow rate. The energy loss, which is equivalent to the refrigeration capacity at the cold end of the ideal pulse tube refrigerator, was mainly generated through the orifice. It was proportional to the opening of the orifice valve, but the real refrigerator displayed the best performance at the optimized opening of the orifice valve. This optimized performance of the tested pulse tube refrigerator can be explained by additional refrigeration losses. As an example, the shuttle heat transfer loss of the pulse tube was calculated from the measured experimental data.