• 제목/요약/키워드: Double Emission Layer

검색결과 70건 처리시간 0.024초

직류 마그네트론 스퍼터법에 의한 AlNO 복층박막의 제조와 특성 (Properties and Preparation of AlNO Multi-layer Thin Films Using DC Magnetron Sputter Method)

  • 김현후;오동현;백찬수;장건익;최동호
    • 한국전기전자재료학회논문지
    • /
    • 제27권9호
    • /
    • pp.589-593
    • /
    • 2014
  • AlNO multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. $Al_2O_3$/AlNO(LMVF)/AlNO(HMVF)/Al/substrate of 4 multi-layer has been prepared in an Ar and ($N_2+O_2$) gas mixture, and $Al_2O_3$ of top layer is anti-reflection layer on double AlNO(LMVF)/AlNO(HMVF) layers and Al metal of infrared reflection layer. In this study, the roughness and surface properties of AlNO thin films were estimated by field emission scanning electron microscopy(FE-SEM). The grain size of AlNO thin films increased with increasing sputtering power. The composition of thin films has been systematically investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The absorptance of AlNO films shows the increasing trend with swelling ($N_2+O_2$) gas mixture in HMVF and LMVF deposition. The excellent optical performance showed above 98% of absorptance in visible wavelength region.

태양열 흡수판용 복층 TiNOx 박막의 제조와 특성 분석 (Characteristic Analysis and Preparation of Multi-layer TiNOx Thin Films for Solar-thermal Absorber)

  • 오동현;한상욱;김현후;장건익;이용준
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.820-824
    • /
    • 2014
  • TiNOx multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. 4 multi-layers of $TiO_2$/TiNOx(LMVF)/TiNOx(HMVF)/Ti/substrate have been prepared with ratio of Ar and ($N_2+O_2$) gas mixture. $TiO_2$ of top layer is anti-reflection layer on double TiNOx(LMVF)/TiNOx(HMVF) layers and Ti metal of infrared reflection layer. In this study, the crystallinity and surface properties of TiNOx thin films were estimated by X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM), respectively. The grain size of TiNOx thin films shows to increase with increasing sputtering power. The composition of thin films has been investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The TiNOx multi-layer films show the excellent optical performance beyond 9% of reflectance in those ranges wavelength.

Enhanced Electrocatalytic Activity of Low Ni Content Nano Structured NiPd Electrocatalysts Prepared by Electrodeposition Method for Borohydride Oxidation

  • Zolfaghari, Mahdieh;Arab, Ali;Asghari, Alireza
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권3호
    • /
    • pp.238-247
    • /
    • 2020
  • Some nano structured bimetallic NiPd electrocatalysts were electrodeposited on glassy carbon electrodes using a double potential step chronoamperometry. The morphology of the electrodeposited samples was investigated by field emission-scanning electron microscopy, while their compositions were evaluated using energy dispersive X-ray spectroscopy. It was observed that the electrodeposited samples contained a low Ni content, in the range of 0.80 - 7.10%. The electrodeposited samples were employed as the anode electro-catalysts for the oxidation of sodium borohydride in NaOH solution (1.0 M) using cyclic voltammetry, chronoamperometry, rotating disk electrode, and impedance spectroscopy. The number of exchanged electrons, charge transfer resistances, apparent rate constants, and double layer capacitances were calculated for the oxidation of borohydride on the prepared catalysts. According to the results obtained, the NiPd-2 sample with the lowest Ni content (0.80%), presented the highest catalytic activity for borohydride oxidation compared with the other NiPd samples as well as the pure Pd sample. The anodic peak current density was obtained to be about 1.3 times higher on the NiPd-2 sample compared with that for the Pd sample.

이중 바닥 온돌 시스템의 응용에 관한 이론적 분석 (Theoretical Analysis on the Applications of the Double-Floor Ondol System)

  • 최원기;이강영;이현근;서승직
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.355-363
    • /
    • 2007
  • The Korean traditional 'Ondol' system has been a target for innovation to meet the requirements of sustainable domestic building and low carbon emission energy utilization. Simulation techniques provide designers and researchers with powerful tools to predict heating load and thermal behaviour of Ondol systems installed in various contexts. However, there are few studies on Ondol models, especially associated with multi-stories buildings of which type covers about 50% of Korean housing stock. In this study, we analyzed the double floor Ondol system on the multi-stories buildings using the ESP-r program. On the basis of the double floor Ondol system, we suggested the new modelling method that is composed of the Vent zone and Ondol zone. Using the this model, sensitivity analysis was carried out to refine the applicability of the model taking account of control conditions, constructions, air change and air flow network method and CFD analysis using the FLUENT. The air layer has enough temperature to use in heating zone. It is suggested that the simplicity of the model will allow building designers and mechanical engineers easily to implement scenario-based assessments of design options as well as control strategies. Later, we will simulate the real buildings and analyze the air distributions using the Fluent according to the various conditions.

Types and Yields of Carbon Nanotubes Synthesized Depending on Catalyst Pretreatment

  • 고재성;이내성
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.17.2-17.2
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) were grown with vertical alignment on a Si wafer by using catalytic thermal chemical vapor deposition. This study investigated the effect of pre-annealing time of catalyst on the types of CNTs grown on the substrate. The catalyst layer is usually evolved into discretely distributed nanoparticles during the annealing and initial growth of CNTs. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. Both the catalyst and support layers were coated by using thermal evaporation. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of H2 as a carrier gas and 20 sccm of C2H2 as a feedstock at 95 torr and $750^{\circ}C$. In this study, the catalyst and support layers were subject to annealing for 0~420 sec. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The annealing for 90~300 sec caused the growth of DWCNTs as high as ~670 ${\mu}m$ for 10 min while below 90 sec and over 420 sec 300~830 ${\mu}m$-thick triple and multiwalled CNTs occurred, respectively. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of 112~191 cm-1, implying the presence of DWCNTs, TWCNTs, MWCNTs with the tube diameters 3.4, 4.0, 6.5 nm, respectively. The maximum ratio of DWCNTs was observed to be ~85% at the annealing time of 180 sec. The Raman spectra of the as-grown DWCNTs showed low G/D peak intensity ratios, indicating their low defect concentrations. As increasing the annealing time, the catalyst layer seemed to be granulated, and then grown to particles with larger sizes but fewer numbers by Ostwald ripening.

  • PDF

플라즈마질화에서 발생기 질소와 질화 속도에 관한 연구 (The Effect of Activated Nitrogen Species for Diffusion Rate during a Plasma Nitriding Process)

  • 김상권;김성완
    • 열처리공학회지
    • /
    • 제23권3호
    • /
    • pp.150-155
    • /
    • 2010
  • Generally, plasma nitriding process has composed with a nitriding layer within glow discharge region occurred by energy exchange. The dissociations of nitrogen molecules are very difficult to make neutral atoms or ionic nitrogen species via glow discharge area. However, the captured electrons in which a double-folded screen with same potential cathode can stimulate and come out some single atoms or activated ionic species. It was showed an important thing that is called "hat is a dominant component in this nitriding process?" in plasma nitriding process and it can take an effective species for without compound layer. During a plasma nitriding process, it was able to estimate with analyzing and identification by optical emission spectroscopy (OES) study. And then we can make comparative studies on the nitrogen transfer with plasma nitriding and ATONA process using plasma diagnosis and metallurgical observation. From these observations, we can understand role of active species of nitrogen, like N, $N^+$, ${N_2}^+$, ${N_2}^*$ and $NH_x$-radical, in bulk plasma of each process. And the same time, during DC plasma nitriding and other processes, the species of FeN atom or any ionic nitride species were not detected by OES analyzing.

$Alq_3$의 녹색발광특성에 관한 연구 (A Study on the Green Eemission Ccharacteristics of $Alq_3$)

  • 강용철;전동규;송진원;김영근;김주승;구할본;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.957-960
    • /
    • 2002
  • Electroluminescence(EL) from conjugated polymers has recently received great attention because polymer light-emitting diodes(LEDs) clealy have potential for applications such as large-area displays. The operation of polymer LEDs is based on double injection of electrons and holes from the elextrodes, followed by formation of excitons whose radiative decay results in light emission at wavelength characteristic to the material. In this paper, we fabricated the single layer EL device using $Alq_3$ as emitting material. According as turn on voltage could know about 5.5V in voltage-current characteristics and voltage rise, current could see that increase as non-linear. Current and ruminance can see that express similar relativity in voltage, and could know that ruminance is expressing current relativity.

  • PDF

New Green Phosphorescent Organic Light Emitting Devices with the (TCTA/$TCTA_{0.5}TPBI_{0.5}$/TPBI):$Ir(ppy)_3$ Emission Layer

  • Jang, Ji-Geun;Shin, Sang-Baie;Shin, Hyun-Kwan;Kim, Won-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.465-468
    • /
    • 2008
  • New green light emitting phosphorescent devices with host structure of TCTA[4,4',4"-tris(N-carbazolyl)-triphenylamine]/$TCTA_{0.5}TPBi_{0.5}$/TPBI[1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene] were proposed and investigated according to the thickness combination of host layers and the doping level of $Ir(ppy)_3$[tris(2-phenylpyridine) iridium(III)].

  • PDF

Poly(3-octylthiophene) 전계발광소자의 발광특성 (Emitting characteristics of poly(3-octylthiophene) electroluminescent devices)

  • 서부완;김주승;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2000
  • Electroluminescent[EL] from conjugated polymers has recently received great attention because polymer light-emitting diodes[LEDs] clearly have potential for applications such as large-area displays. The operation of polymer LEDs is based on double injection of electrons and holes from the electrodes, followed by formation of excitons whose radiative decay results in light emission at wavelength characteristic to the material In this paper, we fabricated the single layer EL device using poly(3-octylthiophene)[P3OT] as emitting material. The orange-red light was clearly visible in a dark room Maximum peak wavelength of EL spectrum saw at 640nm in accordance with photon energy 1.9eV. And we know that ionization energy of P3OT is 4.7eV from the cyclic voltammetry.

  • PDF

투명 금속 음극을 이용한 녹색 인광 OLED의 특성 (Characteristic of transparent OLED using transparent metal cathode with green phosphorescent dopant)

  • 윤도열;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2010
  • We have developed transparent OLED with green phosphorescent doped layer using transparent metal cathode deposited by thermal evaporation technique. Phosphorescent guest molecule, $Ir(ppy)_3$, was doped in host mCP for the green phosphorescent emission. Ca/Ag double layers were used as a cathode material of transparent OLED. The turn-on voltage of OLED was 5.2 V. The highest efficiency of the device reachs to 31 cd/A at 2 mA/$cm^2$.

  • PDF