• 제목/요약/키워드: Double Emission Layer

검색결과 70건 처리시간 0.025초

PFO : MEH-PPV 발광층과 정공 차단층을 이용한 고분자 발광다이오드의 특성 (Properties of Polymer Light Emitting Diodes Using PFO : MEH-PPV Emission Layer and Hole Blocking Layer)

  • 이학민;공수철;신상배;박형호;전형탁;장호정
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.49-53
    • /
    • 2008
  • The yellow base polymer light emitting diodes(PLEDs) with double emission and hole blocking layers were prepared to improve the light efficiency. ITO(indium tin oxide) and PEDOT : PSS[poly(3,4-ethylenedioxythiophene) : poly(styrene sulfolnate)] were used as cathode and hole transport materials. The PFO[poly(9,9-dioctylfluorene)] and MEH-PPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and guest materials, respectively. TPBI[Tpbi1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene] was used as hole blocking layer. To investigate the optimization of device structure, we prepared four kinds of PLED devices with different structures such as single emission layer(PFO : MEH-PPV), two double emission layer(PFO/PFO : MEH-PPV, PFO : MEH-PPV/PFO) and double emission layer with hole blocking layer(PFO/PFO : MEH-PPV/TPBI). The electrical and optical properties of prepared devices were compared. The prepared PLED showed yellow emission color with CIE color coordinates of x = 0.48, y = 0.48 at the applied voltage of 14V. The maximum luminance and current density were found to be about 3920 cd/$m^2$ and 130 mA/$cm^2$ at 14V, respectively for the PLED device with the structure of ITO/PEDOT : PSS/PFO/PFO : MEH-PPV/TPBI/LiF/Al.

  • PDF

Effect of Ag Capping Layer on the Emission Characteristics of Transparent Organic Light-emitting Devices with Ca/Ag Double-layer Cathodes

  • Lee, Chan-Jae;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권1호
    • /
    • pp.45-48
    • /
    • 2014
  • We have investigated the effects of an Ag capping layer on the emission characteristics of transparent organic light-emitting devices with Ca/Ag double-layer cathodes. The thickness of the Ag layer was varied from 10 to 30 nm, whereas the Ca was fixed to be a 10 nm in the Ca/Ag structure. The luminance and current efficiency on the cathode and anode sides are significantly dependent on the Ag thickness. For example, the current efficiency on the anode side increases from 8.4 to 11.7 cd/A, whereas, on the cathode side, it decreases from 3.2 to 0.2 cd/A as the Ag thickness increases from 10 to 30 nm. These changes in emission characteristics were investigated by measuring electroluminescence, transmission, and reflection spectra.

Synthesis of PPV-PTV Alternating Copolymer and EL Devices Using the Polymer

  • 황도훈;정상돈;도래미;안택;심홍구;정태형
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권3호
    • /
    • pp.332-335
    • /
    • 1998
  • An alternating copolymer of PPV and PTV, poly[2-methoxy-5-(3,7-dimethyl)octyloxy-1,4-phenylenevinylene-alt-2,5-thienylenevinylene] (DAPPV-PTV) has been synthesized and light-emitting properties of the polymer have been studied. A single layer EL device using DAPPV-PTV as an emitting layer between ITO and Al electrodes (ITO/DAPPV-PTV/Al) has been fabricated, and light emission of the device becomes visible at 3 V. The EL emission maximum of the device is about 620 nm. Double layer EL device using DAPPV-PTV and Alq3 (ITO/DAPPV-PTV/Alq3/Al) has also been fabricated. The double layer EL device shows two-color emission depending on the applied voltage. The device emits a pale green color from 8 V, and then the color turns to red at about 18 V.

Synthesis of Conjugated Copolymers with phenothiazine and Azomethine Units and their Electro-Optic Properties

  • Seo, Hyeon-Jin;Jang, Byeung-Jo;Chang, Jin-Gyu;Park, Lee-Soon
    • Journal of Information Display
    • /
    • 제2권4호
    • /
    • pp.8-14
    • /
    • 2001
  • Three types of conjugated polymers, poly(PZ-Pi), poly(PZ-BPI) and poly(PZ-NPI) were synthesized by Schiff-base reaction. These new conjugated polymers exhibited improved solubility in common organic solvents due to the presence of alkyl side chains as well as azomethine groups, Double layer LEDs made with the synthesized polymers as emitting layer and $Alq_3$, as electron transporting layer exhibited enhanced EL emission and efficiency compared to those of single layer LEDs. Double layer LEDs exhibited gradual shift in the emission peak th the single layer LED, made of only $Alq_3$ as the emitting layer as the thickness of $Alq_3$ layer increased.

  • PDF

유기물 적층 구조에 따른 유기 발광 소자의 발광 특성에 관한 연구 (A Study on the Emission Properties of Organic Electroluminescence Device by Various Stacked Organics Structures)

  • 노병규;김중연;오환술
    • 한국전기전자재료학회논문지
    • /
    • 제13권11호
    • /
    • pp.943-949
    • /
    • 2000
  • In this paper, the single and double heterostructure organic light-emitting devices(OLEDs) were fabricated. The single heterostructure OLED(TYPE 1) is consisted of TPD as a HTL(hole transfer layer) and Alq$_3$as an EML(emitting layer). The double heterostructure OLED(TYPE 2) is consisted of TPD as a HTL, Alq$_3$as an EML and PBD as an ETL(electron transfer layer). The another double heterostructure OLED(TYPE 3) is consisted of TPD as a HTL, PBD as an EML and Alq$_3$as an ETL. We obtained a strong green emission device with maximum EL emission wavelength 500nm in TYPE 3. When the applied voltage was 12V, the emission luminescence was 120.9cd/㎡. The chromaticity index of TYPE 3 was x=0.29, y=0.50. In the characteristic plot of current-voltage, TYPE 3 device was turned on at 6.9V. This voltage was a fairly low turn-on voltage. TYPE 1 and 2 device were turned on at 10V and 8.9V respectively. These types showed no good properties over that of TYPE 3.

  • PDF

음전극 변화에 따른 전면 유기 발광 소자의 광학적 특성 (Optical properties of top-emission organic light-emitting diodes due to a change of cathode electrode)

  • 주현우;안희철;나수환;김태완;장경욱;오현석;오용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.345-346
    • /
    • 2008
  • We have studied an emission spectra of top-emssion organic light-emitting diodes(TEOLED) due to a change of cathode and organic layer thickness. Device structure is Al(100nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/cathode. And two different types of cathode were used; one is LiF(0.5nm)/Al(25nm) and the other is LiF(0.5nm)/Al(2nm)/Ag(30nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layer was kept to be about 2:3. Al and Al/Ag double layer cathode devices show that the emission spectra were changed from 490nm to 560nm and from 490nm to 560nm, respectively, when the total organic layer increase. Full width at half maximum was changed from 67nm to 49nm and from 90nm to 35nm as the organic layer thickness increases. All devices show that view angle dependent emission spectra show a blue shift. Blue shift is strong when the organic layer thickness is more than 140nm. Devece with Al/Ag double layer cathode is more vivid.

  • PDF

Synthesis of Phenanthridine-Containing Conjugated Copolymer and OLED Device Properties

  • Park, Lee-Soon;Jeong, Young-Chul;Han, Yoon-Soo;Kim, Sang-Dae;Kwon, Young-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.588-591
    • /
    • 2004
  • Polyazomethine type conjugated copolymers containing phenanthridine units, poly(PZ-PTI), were synthesized by Schiff-base reaction. This new conjugated copolymer exhibited improved solubility in common organic solvents due to the presence of alkyl side chains as well as phenanthridine groups. Double layer (ITO/poly(PZ-PTI)/$Alq_3$/Mg) light emitting diode (LED) exhibited enhanced EL emission and efficiency compared to that of single layer (ITO/poly(PZ-PTI)/Mg) LED. With increasing the thickness of $Alq_3$ layer in double layer (ITO/poly(PZ-PTI)/$Alq_3$/Mg) LED the emission peak gradually shifted to the single layer (ITO/$Alq_3$/Mg) LED, confirming good hole transporting behaviour of the synthesized conjugated copolymer.

  • PDF

CsCl 보호막을 이용한 전면발광 OLED의 전기 및 광학적 특성 (Electrical and Optical Properties of Top Emission OLEDs with CsCl Passivation Layer)

  • 김소연;문대규;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제21권2호
    • /
    • pp.173-177
    • /
    • 2008
  • We have developed the transparent passivation layer for top emission organic light emitting diodes using CsCl thin film by the thermal evaporation method. The CsCl film was deposited on the Ca/Ag semitransparent cathode. The optical transmittance of Ca/ Ag/CsCl triple layer is higher than that of Ca/Ag double layer in the visible range. The device with a structure of glass/Ni/2-TNATA/a-NPD/Alq3:C545T/BCP/Alq3/Ca/Ag/CsCl results in higher efficiency than the device without CsCl passivation layer. The device without CsCl thin film shows a current efficiency of 7 cd/A, whereas the device passivated with CsCl layer shows an efficiency of 10 cd/A. This increase of efficiency isresulted from the increased optical extraction by the CsCl passivation layer.

Top Emission Organic Light Emitting Diode with Transparent Cathode, Ba-Ag Double Layer

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of Information Display
    • /
    • 제7권3호
    • /
    • pp.23-26
    • /
    • 2006
  • We fabricated top emission organic light emitting diode (TEOLED) with transparent metal cathode Barium and Silver bilayer. Very thin Ba/Ag bilayer was deposited on the organic layer by thermal evaporation. This cathode showed high transmittance over 70% in visible range, and the device with a Ba-Ag has a low turn on voltage and good electrical properties.

A high efficiency green phosphorescent OLED with simple double emission layer structure

  • Kim, Sun-Young;Park, Tae-Jin;Jeon, Woo-Sik;Kim, Jong-Sil;Pode, Rachamdra;Jang, Jin;Kwon, Jang-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.30-33
    • /
    • 2008
  • Using a $Ir(ppy)_3$ doped in hole and electron transport host materials, simple three layers green PHOLEDs comprising double emissive layers have been fabricated. A low driving voltage value of 3.3 V to reach a luminance of $1000\;cd/m^2$ and maximum current- and power-efficiency values of 53.9 cd/A and 57.8 lm/W are demonstrated in this simple structure phosphorescent OLED.

  • PDF