• 제목/요약/키워드: Double Cylindrical Shell

검색결과 17건 처리시간 0.018초

영향계수의 전달에 의한 2중 원통형 셸의 자유진동해석 (Free Vibration Analysis of Double Cylindrical Shells Using Transfer of Influence Coefficent)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제21권5호
    • /
    • pp.48-54
    • /
    • 2017
  • The transfer influence coefficient method which is an vibration analysis algorithm based on the transfer of influence coefficient is applied to the free vibration analysis of double cylindrical shells. After the computational programs for the free vibration analysis of double cylindrical shells were made using the transfer influence coefficient method and the transfer matrix method, we compared the results using the transfer influence coefficient method with those by the transfer matrix method. The transfer influence coefficient method provided the good computational results in the free vibration analysis of double cylindrical shells. In particular, The results of the transfer influence coefficient method are superior to those of the transfer matrix method when the stiffness of internal springs connecting a inside cylindrical shell and a outside cylindrical shell is very large.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution

  • Yazdani, Raziye;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.499-511
    • /
    • 2019
  • In this paper, wave propagation of double-bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and carbon nanotube reinforced composite (CNTRC) face sheets are investigated subjected to multi-physical loadings with temperature dependent material properties. The governing equations of motion are derived by Hamilton's principle. Then, the influences of various parameters such as wave number, CNT volume fraction, temperature change, Skempton coefficient, material length scale parameter, porosity coefficient on the phase velocity of double-bonded micro sandwich shell are taken into account. It is seen that by increasing of Skempton coefficient, the phase velocity decreases for higher wave number and the results become approximately the constant. Also, by increasing of the material length scale parameter, the cut of frequency increases, because the stiffness of micro structure increases. The obtained results for this article can be used to detect, locate and quantify crack.

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

국부하중 을 받는 직교이방성 원통셀 의 해석 (Analysis of Orthotropic Cylindrical Shells Subjected to Localized Loads)

  • 이영신;박정화;옹장우
    • 대한기계학회논문집
    • /
    • 제8권5호
    • /
    • pp.408-415
    • /
    • 1984
  • 본 연구에서는 기존연구에 비하여 해의 형태가 간단하고 비교적 오차가 적은 해를 구하기 위하여 MorleyKoiter의 등방성 원통셸의 변위 및 응력상태를 2중 Fourier 급수를 적용하여 해석하였으며 수치예를 통하여 이들 값의 직교이방특성 및 셸형상에 따른 영향을 고찰하였다.

링보강 복합재료 원통셸의 과도해석 (Transient Analysis of Composite Cylindrical Shells with Ring Stiffeners)

  • 김영완
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1802-1812
    • /
    • 2001
  • The theoretical method is developed to investigate the effects of ring stiffeners on free vibration characteristics and transient response for the ring stiffened composite cylindrical shells subjected to the impulse pressure Loading. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The concentric or eccentric ring stiffeners are laminated with composite and have the uniform rectangular cross section. The modal analysis technique is used to develop the analytical solutions of the transient problem. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The results are verified by comparison with FEM results.

동하중을 받는 복합재료 원통셸의 동적거동 해석 (On the Dynamic Response of Laminated Circular Cylindrical Shells under Dynamic Loads)

  • 이영신;이기두
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2684-2693
    • /
    • 1993
  • The free vibration and dynamic response of cross-ply for CFRP and GFRP laminated circular cylindrical shells under dynamic loadings are investigated by using the first-order shear deformation shell theory. The modal analysis technique is used to develop the analytical solutions of simply supported cylindrical shells under dynamic load. The analysis is based on an expansion of the loads, displacements and rotations in a double Fourier series which satisfies the and boundary conditions of simply support. Analytical solution is assumed to be separable into a function of time and a function of position. In this paper, the considered load forces are step pulse, sine pulse, triangular(1, 2, 3) pulse and exponential pulse. The solution for a given loading pulse can be found by involving the convolution integral. The results show that the dynamic response are governed primarily by the natural period of the structure.

Damage prediction of RC containment shell under impact and blast loading

  • Pandey, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제36권6호
    • /
    • pp.729-744
    • /
    • 2010
  • There is world wide concern for safety of nuclear power installations after the terrorist attack on World Trade Center in 2001 and several other civilian structures in the last decade. The nuclear containment structure in many countries is a double shell structure (outer shell a RCC and inner a prestressed concrete). The outer reinforced concrete shell protects the inner shell and is designed for external loading like impact and blast. A comparative study of non-linear response of reinforced concrete nuclear containment cylindrical shell subjected to impact of an aircraft (Phantom) and explosion of different amounts of blast charges have been presented here. A material model which takes into account the strain rate sensitivity in dynamic loading situations, plastic and visco-plastic behavior in three dimensional stress state and cracking in tension has been developed earlier and implemented into a finite element code which has been validated with published literature. The analysis has been made using the developed software. Significant conclusions have been drawn for dissimilarity in response (deflections, stresses, cracks etc.) of the shell for impact and blast loading.

보강(補剛) 원통 Shell의 좌굴(挫屈) 및 최적보강(最適補强) (Buckling and Optimum Reinforcement of Axially Stiffened Cylindrical Shells)

  • 장창두;노완
    • 대한조선학회지
    • /
    • 제24권1호
    • /
    • pp.42-50
    • /
    • 1987
  • The energy expressions are formulated for the axially stiffened shell treating the stiffeners as discrete elements. The principle of minimum potential energy is employed to formulate the buckling equations for a simply supported, axially stiffened shell under uniform axial compression. The displacement functions are expended into double trigonometric series. The mode assuming method employed in this paper makes it possible to reduce the matrix size of the eigenvalue problem considerably. Effects are made to investigate the transition from overall buckling to local buckling and to verify the existence of the minimum stiffness ratio of stiffener as in the case of stiffened plate. The results of the calculation show that the critical stiffener size increase linearly as the length of the shell increases. The results also show that the overall buckling load decreases and the local buckling load has a nearly constant value as the length of the shell increases. The results show very good agreements with other computational available.

  • PDF

Fluid-structure coupling of concentric double FGM shells with different lengths

  • Moshkelgosha, Ehsan;Askari, Ehsan;Jeong, Kyeong-Hoon;Shafiee, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • 제61권2호
    • /
    • pp.231-244
    • /
    • 2017
  • The aim of this study is to develop a semi-analytical method to investigate fluid-structure coupling of concentric double shells with different lengths and elastic behaviours. Co-axial shells constitute a cylindrical circular container and a baffle submerged inside the stored fluid. The container shell is made of functionally graded materials with mechanical properties changing through its thickness continuously. The baffle made of steel is fixed along its top edge and submerged inside fluid such that its lower edge freely moves. The developed approach is verified using a commercial finite element computer code. Although the model is presented for a specific case in the present work, it can be generalized to investigate coupling of shell-plate structures via fluid. It is shown that the coupling between concentric shells occurs only when they vibrate in a same circumferential mode number, n. It is also revealed that the normalized vibration amplitude of the inner shell is about the same as that of the outer shell, for narrower radial gaps. Moreover, the natural frequencies of the fluid-coupled system gradually decrease and converge to the certain values as the gradient index increases.